Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-14T10:32:09.323Z Has data issue: false hasContentIssue false

11 - Superfluidity and Phase Correlations of Driven Dissipative Condensates

from Part II - General Topics

Published online by Cambridge University Press:  18 May 2017

J. Keeling
Affiliation:
SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS UK
L. M. Sieberer
Affiliation:
University of California, Berkeley
E. Altman
Affiliation:
University of California, Berkeley
L. Chen
Affiliation:
University of Texas at Austin, USA
S. Diehl
Affiliation:
Institut für Theoretische Physik, Universität zu Köln
J. Toner
Affiliation:
Department of Physics and Institute of Theoretical Science, University of Oregon
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

We review recent results on the coherence and superfluidity of driven dissipative condensates, i.e., systems of weakly interacting nonconserved bosons, such as polariton condensates. The presence of driving and dissipation has dramatically different effects depending on dimensionality and anisotropy. In three dimensions, equilibrium behaviour is recovered at large scales for static correlations, while the dynamical behaviour is altered by the microscopic driving. In two dimensions, for an isotropic system, drive and dissipation destroy the algebraic order that would otherwise exist; however, a sufficiently anisotropic system can still show algebraic phase correlations. We discuss the consequences of this behaviour for recent experiments measuring phase coherence and outline potential measurements that might directly probe superfluidity.

Introduction

This chapter is dedicated to superfluidity and its relation to Bose-Einstein condensation (BEC), a topic with a long history. Many reviews of the concepts of condensation and superfluidity in thermal equilibrium can be found; see for example Refs. [1, 2, 3, 4]. The focus of this chapter is on how these concepts apply (or fail to apply) to driven dissipative condensates – systems of bosons with a finite lifetime, in which loss is balanced by continuous pumping. We focus entirely on the steady state of such systems, neglecting transient, time-dependent behaviour.

Experimentally, the most studied example of a driven dissipative condensate has been microcavity polaritons, an overview of which is given in Ref. [5] and Chapter 4. However, similar issues can arise in many other systems, most obviously photon condensates [6] (see also Chapter 19), magnon condensates [7] (see also Chapters 25–26), and potentially exciton condensates (although typical exciton lifetimes are much longer than for polaritons). Even experiments on cold atoms (see, e.g., Chapter 3) could be driven into a regime in which such physics occurs, when considering continuous loading of atoms balancing threebody losses [8] or atom laser setups [9, 10, 11].

Experiments on polaritons are two-dimensional, and in two dimensions it is particularly important to clearly distinguish three concepts often erroneously treated as equivalent: superfluidity, condensation, and phase coherence. This is because no true Bose-Einstein condensate exists in a homogeneous two-dimensional system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Huang, Kerson. 1995. Bose-Einstein condensation and superfluidity. Page 31 of: Griffin, A., Snoke, D., and Stringari, S. (eds), Bose-Einstein Condensation, Cambridge: Cambridge University Press.
[2] Leggett, A. J. 1999. Superfluidity. Rev. Mod. Phys., 6861, 318–323.Google Scholar
[3] Hohenberg, P. C., and Martin, P. C. 2000. Microscopic theory of superfluid helium. Ann. Phys. (N.Y)., 281, 636–705.Google Scholar
[4] Leggett, A. J. 2006. Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-Matter Systems. Oxford: Oxford University Press.
[5] Carusotto, Iacopo, and Ciuti, Cristiano. 2013. Quantum fluids of light. Rev. Mod. Phys., 85, 299.Google Scholar
[6] Klaers, J., Schmitt, J., Vewinger, F., and Weitz, M. 2010. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468, 545–548.Google Scholar
[7] Demokritov, S. O., Demidov, V. E., Dzyapko, O., Melkov, G. A., Serga, A. A., Hillebrands, B., and Slavin, A. N. 2006. Bose-Einstein condensation of quasiequilibrium magnons at room temperature under pumping. Nature, 443, 430–433.Google Scholar
[8] Falkenau, M., Volchkov, V. V., Rührig, J., Griesmaier, A., and Pfau, T. 2011. Continuous loading of a conservative potential trap from an atomic beam. Phys. Rev. Lett., 106, 163002.Google Scholar
[9] Mewes, M.-O., Andrews, M. R., Kurn, D. M., Durfee, D. S., Townsend, C. G., and Ketterle, W. 1997. Output coupler for Bose-Einstein condensed atoms. Phys. Rev. Lett., 78, 582–585.Google Scholar
[10] Robins, N. P., Figl, C., Jeppesen, M., Dennis, G. R., and Close, J. D. 2008. A pumped atom laser. Nat. Phys., 4, 731.Google Scholar
[11] Robins, N. P., Altin, P. A., Debs, J. E., and Close, J. D. 2013. Atom lasers: production, properties and prospects for precision inertial measurement. Phys. Rep., 529, 265– 296.Google Scholar
[12] Yang, C. N. 1962. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys., 34, 694–704.Google Scholar
[13] Pitaevskii, L. P., and Stringari, S. 2003. Bose-Einstein Condensation. Oxford: Clarendon Press.
[14] Hess, G. B., and Fairbank, W. M. 1967. Measurements of angular momentum in superfluid helium. Phys. Rev. Lett., 19, 216–218.Google Scholar
[15] Griffin, Allan. 1994. Excitations in a Bose-Condensed Liquid. Cambridge: Cambridge University Press.
[16] Mermin, N. D., and Wagner, H. 1966. Absence of ferromagnetism or antiferromagnetism in one- or two- dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17, 1133.Google Scholar
[17] Kosterlitz, J. M., and Thouless, D. J. 1973. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys., 6, 1181.Google Scholar
[18] Kosterlitz, J. M. 1974. The critical properties of the two-dimensional XY model. J. Phys. C Solid State Phys., 7, 1046–1060.Google Scholar
[19] Berezinskii, V. L. 1972. Destruction of long-range order in one-dimensional and twodimensional systems possessing a continuous symmetry group. II. Quantum systems. Sov. Phys. JETP, 34, 610Google Scholar
[Zh. Eksp. Teor. Fiz. 61, 1144–1156 (1971)].
[20] Nelson, David R. 1977. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett., 39, 1201–1205.Google Scholar
[21] Chaikin, P. M., and Lubensky, T. C. 1995. Principles of Condensed Matter Physics. Cambridge: Cambridge University Press.
[22] Wouters, M., and Carusotto, I. 2006. Absence of long-range coherence in the parametric emission of photonic wires. Phys. Rev. B, 74, 245316.Google Scholar
[23] Szymańska, M. H., Keeling, J., and Littlewood, P. B. 2006. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett., 96, 230602.Google Scholar
[24] Szymańska, M. H., Keeling, J., and Littlewood, P. 2007. Mean-field theory and fluctuation spectrum of a pumped decaying Bose-Fermi system across the quantum condensation transition. Phys. Rev. B, 75, 195331.Google Scholar
[25] Aranson, Igor, and Kramer, Lorenz. 2002. The world of the complex Ginzburg- Landau equation. Rev. Mod. Phys., 74, 99–143.Google Scholar
[26] Astrakharchik, G. E., and Pitaevskii, L. P. 2004. Motion of a heavy impurity through a Bose-Einstein condensate. Phys. Rev. A, 70, 013608.Google Scholar
[27] Wouters, Michiel, and Carusotto, Iacopo. 2010. Superfluidity and critical velocities in nonequilibrium Bose-Einstein condensates. Phys. Rev. Lett., 105, 020602.Google Scholar
[28] Cancellieri, E., Marchetti, F. M., Szymańska, M. H., and Tejedor, C. 2010. Superflow of resonantly driven polaritons against a defect. Phys. Rev. B, 82, 224512.Google Scholar
[29] Roumpos, G., Lohse, M., Nitsche, W. H., Keeling, J., Szymańska, M. H., Littlewood, P. B., Löffler, A., Höfling, S., Worschech, L., Forchel, A., and Yamamoto, Y. 2012. Power-law decay of the spatial correlation function in exciton-polariton condensates. Proc. Nat. Acad. Sci, 109, 6467.Google Scholar
[30] Chiocchetta, A., and Carusotto, I. 2013. Non-equilibrium quasi-condensates in reduced dimensions. Eur. Phys. Lett., 102, 67007.Google Scholar
[31] Kamenev, A. 2011. Field Theory of Non-Equilibrium Systems. Cambridge: Cambridge University Press.
[32] Graham, R., and Tel, T. 1990. Steady-state ensemble for the complex Ginzburg- Landau equation with weak noise. Phys. Rev. A, 42, 4661.Google Scholar
[33] Sieberer, L. M., Huber, S. D., Altman, E, and Diehl, S. 2014. Nonequilibrium functional renormalization for driven-dissipative Bose-Einstein condensation. Phys. Rev. B, 89, 134310.Google Scholar
[34] Sieberer, L. M., Huber, S. D., Altman, E., and Diehl, S. 2013. Dynamical critical phenomena in driven-dissipative systems. Phys. Rev. Lett., 110, 195301.Google Scholar
[35] Täuber, U. C., and Diehl, S. 2014. Perturbative field-theoretical renormalization group approach to driven-dissipative Bose-Einstein criticality. Phys. Rev. X, 4, 021010.Google Scholar
[36] Altman, E., Sieberer, L. M., Chen, L., Diehl, S., and Toner, J. 2015. Two-dimensional superfluidity of exciton polaritons requires strong anisotropy. Phys. Rev. X, 5, 011017.Google Scholar
[37] Kardar, M., Parisi, G., and Zhang, Y.-C. 1986. Dynamic scaling of growing interfaces. Phys. Rev. Lett., 56, 889–892.Google Scholar
[38] Chen, L., and Toner, J. 2013. Universality for moving stripes: a hydrodynamic theory of polar active smectics. Phys. Rev. Lett., 111, 088701.Google Scholar
[39] Wolf, D. E. 1991. Kinetic roughening of vicinal surfaces. Phys. Rev. Lett., 67, 1783–1786.Google Scholar
[40] Kim, J., and Kosterlitz, J. 1989. Growth in a restricted solid-on-solid model. Phys. Rev. Lett., 62, 2289–2292.Google Scholar
[41] Miranda, V. G., and Aaro Reis, F. D. A. 2008. Numerical study of the Kardar-Parisi- Zhang equation. Phys. Rev. E, 77, 031134.Google Scholar
[42] Marinari, E., Pagnani, A., and Parisi, G. 2000. Critical exponents of the KPZ equation via multi-surface coding numerical simulations. J. Phys. A: Math. Gen., 33, 8181–8192.Google Scholar
[43] Ghaisas, S. 2006. Stochastic model in the Kardar-Parisi-Zhang universality class with minimal finite size effects. Phys. Rev. E, 73, 022601.Google Scholar
[44] Chin, C.-S., and den Nijs, M. 1999. Stationary-state skewness in two-dimensional Kardar-Parisi-Zhang type growth. Phys. Rev. E, 59, 2633–2641.Google Scholar
[45] Tang, L.-H., Forrest, B., and Wolf, D. 1992. Kinetic surface roughening. II. Hypercube-stacking models. Phys. Rev. A, 45, 7162–7179.Google Scholar
[46] Fisher, M. P. A., and Grinstein, G. 1992. Nonlinear transport and 1/f a noise in insulators. Phys. Rev. Lett., 69, 2322–2325.Google Scholar
[47] Gladilin, V. N., Ji, K., and Wouters, M. 2014. Spatial coherence of weakly interacting one-dimensional nonequilibrium bosonic quantum fluids. Phys. Rev. A, 90, 023615.Google Scholar
[48] Ji, K., Gladilin, V. N., and Wouters, M. 2015. Temporal coherence of one-dimensional nonequilibrium quantum fluids. Phys. Rev. B, 91, 045301.Google Scholar
[49] He, L., Sieberer, L. M., Altman, E., and Diehl, S. 2015. Scaling properties of onedimensional driven-dissipative condensates. Phys. Rev. B 92, 155307.Google Scholar
[50] Nitsche, W. H., Kim, N. Y., Roumpos, G., Schneider, C., Kamp, M., Höfling, S., Forchel, A., and Yamamoto, Y. 2014. Algebraic order and the Berezinskii-Kosterlitz- Thouless transition in an exciton-polariton gas. Phys. Rev. B, 90, 205430.Google Scholar
[51] Dagvadorj, G., Fellows, J.M., Matyjaskiewicz, S., Marchetti, F. M., Carusotto, I., and Szymańska, M. H. 2015. Non-equilibrium Berezinskii-Kosterlitz-Thouless transition in a driven open quantum system, Phys. Rev. X 5, 041028.Google Scholar
[52] Shelykh, I. A., Kavokin, A. V., Rubo, Yuri G., Liew, T. C. H., and Malpuech, G. 2010. Polariton polarization-sensitive phenomena in planar semiconductor microcavities. Semiconductor Science and Technology, 25, 013001.Google Scholar
[53] Wachtel, G., Sieberer, L. M., Diehl, S. and Altman, E. 2016. Electrodynamic duality and vortex unbinding in driven-dissipative condensates. Phys. Rev. B 94, 104520.Google Scholar
[54] Janot, A., Hyart, T., Eastham, P., and Rosenow, B. 2013. Superfluid stiffness of a driven dissipative condensate with disorder. Phys. Rev. Lett., 111, 230403.Google Scholar
[55] Keeling, J. 2011. Superfluid density of an open dissipative condensate. Phys. Rev. Lett., 107, 080402.Google Scholar
[56] Cooper, N. R., and Hadzibabic, Z. 2010. Measuring the superfluid fraction of an ultracold atomic gas. Phys. Rev. Lett., 104, 030401.Google Scholar
[57] John, S. T., Hadzibabic, Z., and Cooper, N. R. 2011. Spectroscopic method to measure the superfluid fraction of an ultracold atomic gas. Phys. Rev. A, 83, 023610.Google Scholar
[58] Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., André, R., Dang, Le Si, and Deveaud-Plédran, B. 2008. Quantized vortices in an excitonpolariton condensate. Nat. Phys., 4, 706–710.Google Scholar
[59] Amo, A., Sanvitto, D., Laussy, F. P., Ballarini, D., del Valle, E., Martin, M. D., Lemaître, A., Bloch, J., Krizhanovskii, D. N., Skolnick, M. S., Tejedor, C., and Via, L. 2009a. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature, 457, 291–295.Google Scholar
[60] Amo, A., Lefrère, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., Houdré, R., Giacobino, E., and Bramati, A. 2009b. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys., 5, 805–810.Google Scholar
[61] Staliunas, K., and Sanchez-Morcillo, V. J. 2003. Transverse Patterns in Nonlinear Optical Resonators. Berlin: Springer-Verlag.
[62] Keeling, J., and Berloff, N. G. 2008. Spontaneous rotating vortex lattices in a pumped decaying condensate. Phys. Rev. Lett., 100, 250401.Google Scholar
[63] Borgh, M. O., Keeling, J., and Berloff, N. G. 2010. Spatial pattern formation and polarization dynamics of a nonequilibrium spinor polariton condensate. Phys. Rev. B, 81, 235302.Google Scholar
[64] Wouters, M., and Savona, V. 2010. Superfluidity of a nonequilibrium Bose-Einstein condensate of polaritons. Phys. Rev. B, 81, 054508.Google Scholar
[65] Lagoudakis, K. G., Manni, F., Pietka, B., Wouters, M., Liew, T. C. H., Savona, V., Kavokin, A. V., André, R., and Deveaud-Plédran, B. 2011. Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett., 106, 115301.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×