To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An n × n partial Latin square P is called α-dense if each row and column has at most αn non-empty cells and each symbol occurs at most αn times in P. An n × n array A where each cell contains a subset of {1,…, n} is a (βn, βn, βn)-array if each symbol occurs at most βn times in each row and column and each cell contains a set of size at most βn. Combining the notions of completing partial Latin squares and avoiding arrays, we prove that there are constants α, β > 0 such that, for every positive integer n, if P is an α-dense n × n partial Latin square, A is an n × n (βn, βn, βn)-array, and no cell of P contains a symbol that appears in the corresponding cell of A, then there is a completion of P that avoids A; that is, there is a Latin square L that agrees with P on every non-empty cell of P, and, for each i, j satisfying 1 ≤ i, j ≤ n, the symbol in position (i, j) in L does not appear in the corresponding cell of A.
As a strengthening of Hadwiger’s conjecture, Gerards and Seymour conjectured that every graph with no odd Kt minor is (t − 1)-colourable. We prove two weaker variants of this conjecture. Firstly, we show that for each t ⩾ 2, every graph with no odd Kt minor has a partition of its vertex set into 6t − 9 sets V1, …, V6t−9 such that each Vi induces a subgraph of bounded maximum degree. Secondly, we prove that for each t ⩾ 2, every graph with no odd Kt minor has a partition of its vertex set into 10t −13 sets V1,…, V10t−13 such that each Vi induces a subgraph with components of bounded size. The second theorem improves a result of Kawarabayashi (2008), which states that the vertex set can be partitioned into 496t such sets.
We prove a generalmulti-dimensional central limit theorem for the expected number of vertices of a given degree in the family of planar maps whose vertex degrees are restricted to an arbitrary (finite or infinite) set of positive integers D. Our results rely on a classical bijection with mobiles (objects exhibiting a tree structure), combined with refined analytic tools to deal with the systems of equations on infinite variables that arise. We also discuss possible extensions to maps of higher genus and to weighted maps.