We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We are delighted to present the Special Issue on NLP Approaches to Offensive Content Online published in the Journal of Natural Language Engineering issue 29.6. We are happy to have received a total of 26 submissions to the special issue evidencing the interest of the NLP community in this topic. Our guest editorial board comprised of international experts in the field has worked hard to review all submissions over multiple rounds of peer review. Ultimately, we accepted nine articles to appear in this special issue.
The OffensEval shared tasks organized as part of SemEval-2019–2020 were very popular, attracting over 1300 participating teams. The two editions of the shared task helped advance the state of the art in offensive language identification by providing the community with benchmark datasets in Arabic, Danish, English, Greek, and Turkish. The datasets were annotated using the OLID hierarchical taxonomy, which since then has become the de facto standard in general offensive language identification research and was widely used beyond OffensEval. We present a survey of OffensEval and related competitions, and we discuss the main lessons learned. We further evaluate the performance of Large Language Models (LLMs), which have recently revolutionalized the field of Natural Language Processing. We use zero-shot prompting with six popular LLMs and zero-shot learning with two task-specific fine-tuned BERT models, and we compare the results against those of the top-performing teams at the OffensEval competitions. Our results show that while some LMMs such as Flan-T5 achieve competitive performance, in general LLMs lag behind the best OffensEval systems.
In this paper, we propose an enhanced version of the vanilla transformer for data-to-text generation and then use it as the generator of a conditional generative adversarial model to improve the semantic quality and diversity of output sentences. Specifically, by adding a diagonal mask matrix to the attention scores of the encoder and using the history of the attention weights in the decoder, this enhanced version of the vanilla transformer prevents semantic defects in the output text. Also, using this enhanced transformer along with a triplet network, respectively, as the generator and discriminator of conditional generative adversarial network, diversity and semantic quality of sentences are guaranteed. To prove the effectiveness of the proposed model, called conditional generative adversarial with enhanced transformer (CGA-ET), we performed experiments on three different datasets and observed that our proposed model is able to achieve better results than the baselines models in terms of BLEU, METEOR, NIST, ROUGE-L, CIDEr, BERTScore, and SER automatic evaluation metrics as well as human evaluation.