To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The last six months have seen a number of interesting announcements and products in the commercial language technology arena. Here are some that caught my eye, and which you might find interesting too.
In this paper we discuss a persistent problem arising from polysemy: namely the difficulty of finding consistent criteria for making fine-grained sense distinctions, either manually or automatically. We investigate sources of human annotator disagreements stemming from the tagging for the English Verb Lexical Sample Task in the SENSEVAL-2 exercise in automatic Word Sense Disambiguation. We also examine errors made by a high-performing maximum entropy Word Sense Disambiguation system we developed. Both sets of errors are at least partially reconciled by a more coarse-grained view of the senses, and we present the groupings we use for quantitative coarse-grained evaluation as well as the process by which they were created. We compare the system's performance with our human annotator performance in light of both fine-grained and coarse-grained sense distinctions and show that well-defined sense groups can be of value in improving word sense disambiguation by both humans and machines.
We address the problem of improving the efficiency of natural language text input under degraded conditions (for instance, on mobile computing devices or by disabled users), by taking advantage of the informational redundancy in natural language. Previous approaches to this problem have been based on the idea of prediction of the text, but these require the user to take overt action to verify or select the system's predictions. We propose taking advantage of the duality between prediction and compression. We allow the user to enter text in compressed form, in particular, using a simple stipulated abbreviation method that reduces characters by 26.4%, yet is simple enough that it can be learned easily and generated relatively fluently. We decode the abbreviated text using a statistical generative model of abbreviation, with a residual word error rate of 3.3%. The chief component of this model is an n-gram language model. Because the system's operation is completely independent from the user's, the overhead from cognitive task switching and attending to the system's actions online is eliminated, opening up the possibility that the compression-based method can achieve text input efficiency improvements where the prediction-based methods have not. We report the results of a user study evaluating this method.
We address the problem of extracting bilingual chunk pairs from parallel text to create training sets for statistical machine translation. We formulate the problem in terms of a stochastic generative process over text translation pairs, and derive two different alignment procedures based on the underlying alignment model. The first procedure is a now-standard dynamic programming alignment model which we use to generate an initial coarse alignment of the parallel text. The second procedure is a divisive clustering parallel text alignment procedure which we use to refine the first-pass alignments. This latter procedure is novel in that it permits the segmentation of the parallel text into sub-sentence units which are allowed to be reordered to improve the chunk alignment. The quality of chunk pairs are measured by the performance of machine translation systems trained from them. We show practical benefits of divisive clustering as well as how system performance can be improved by exploiting portions of the parallel text that otherwise would have to be discarded. We also show that chunk alignment as a first step in word alignment can significantly reduce word alignment error rate.
We present the source authoring facilities of a natural language generation system that produces personalised descriptions of objects in multiple natural languages starting from language-independent symbolic information in ontologies and databases as well as pieces of canned text. The system has been tested in applications ranging from museum exhibitions to presentations of computer equipment for sale. We discuss the architecture of the overall system, the resources that the authors manipulate, the functionality of the authoring facilities, the system's personalisation mechanisms, and how they relate to source authoring. A usability evaluation of the authoring facilities is also presented, followed by more recent work on reusing information extracted from existing databases and documents, and supporting the OWL ontology specification language.