To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Real-time responses for multiple robots motion planning demand heuristic algorithms. This paper presents a method to evaluate the efficiency of these algorithms in order to compute coordinated trajectories for multiple car-like robots on a segment of a highway. The idea is to compare the results of these algorithms with the optimal result obtained by a proposed mixed-integer linear programming (MILP) optimization model. The MILP model considers the main elements of a traffic system, such as topography of lanes, traffic rules and individual capacity of acceleration. Moreover, new indexes for microscopic traffic assessment are proposed a well. Several tests have been carried out to validate both the MILP model and the algorithm used.
We study the expected value of the length Ln of the minimum spanning tree of the complete graph Kn when each edge e is given an independent uniform [0, 1] edge weight. We sharpen the result of Frieze [6] that limn→∞$\mathbb{E}$(Ln) = ζ(3) and show that
In this paper, we propose a biomechatronic design of an anthropomorphic artificial hand that is able to mimic the natural motion of human fingers. The prosthetic hand has 5 fingers and 15 joints, which are actuated by 5 embedded motors. Each finger has three phalanges that can fulfill flexion-extension movements independently. The thumb is specially designed to move along a cone surface when grasping, and the other four fingers are well developed based on the four-bar link mechanism to imitate the motion of the human finger. To accomplish the sophisticated control schemes, the fingers are equipped with numerous torque and position sensors. The mechanical parts, sensors, and motion control systems are integrated in the hand structure, and the motion of the hand can be controlled through electromyography (EMG) signals in real-time. A new concept for the sensory feedback system based on an electrical stimulator is also taken into account. The low-cost prosthetic hand is small in size (85% of the human hand), of low weight (420 g) and has a large grasp power (10 N on the fingertips), hence it has a dexterous and humanlike appearance. The performance of the prosthetic hand is validated in a clinical evaluation on transradial amputees.
We consider a queueing loss system with heterogeneous skill based servers with arbitrary distributions. We assume Poisson arrivals, with each arrival having a vector indicating which of the servers are eligible to serve it. Arrivals can only be assigned to a server that is both idle and eligible. We assume arrivals are assigned to the idle eligible server that has been idle the longest and derive, up to a multiplicative constant, the limiting distribution for this system. We show that the limiting probabilities of the ordered list of idle servers depend on the service time distributions only through their means. Moreover, conditional on the ordered list of idle servers, the remaining service times of the busy servers are independent and have their respective equilibrium service distributions. We also provide an algorithm using Gibbs sampler Markov Chain Monte Carlo method for estimating the limiting probabilities and other desired quantities of this system.
We study the steady-state queue-length vector in a multi-class queue with relative priorities. Upon service completion, the probability that the next served customer is from class k is controlled by class-dependent weights. Once a customer has started service, it is served without interruption until completion. We establish a state-space collapse for the scaled queue-length vector in the heavy-traffic regime, that is, in the limit the scaled queue-length vector is distributed as the product of an exponentially distributed random variable and a deterministic vector. We observe that the scaled queue length reduces as classes with smaller mean service requirement obtain relatively larger weights. We finally show that the scaled waiting time of a class-k customer is distributed as the product of two exponentially distributed random variables.
In this work, the relationship between the extreme value distributions of the parent and its weighted counterpart distribution is studied. Sufficient conditions are provided in terms of the weight w(x) under which the weighted and parent distributions belong to the same attractor (Fréchet, Weibull, or Gumbel) and the relation of the corresponding shape parameters of the limiting distributions is presented. Additionally, a biased sampling corrected extreme value index is proposed, when the extreme value index is estimated from a biased sample. Finally, some simulation results are presented that suggest the superiority of a biased sample in estimating the extreme value index.
This paper introduces a novel 6-DOF parallel manipulator, which is composed of two 3-RUS parallel manipulators that share a common three-dimensional moving platform. Semi-analytical form solutions are easily obtained to solve the forward displacement analysis of the robot using the non-planar geometry of the moving platform, whereas the velocity, acceleration, and singularity analyses are performed using screw theory. A case study is included to show the application of the kinematic model, which is verified with the aid of a commercially available software. Simple kinematic analysis and reduced singular regions are the main benefits of the proposed parallel manipulator.