To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Traditionally, robot motion planners use Voronoi Diagrams for generating admissible paths that connect an initial with a final configuration. When dynamic scenarios are involved, these techniques imply a heavy computational cost. The novelty of the technique presented here is that it can provide fast and particularly suitable routes without considering the full scenario if environmental changes appear. The new method is designed to work with a post-process technique in order to provide admissible paths for car-like robots coping with kinematic constraints. This new approach is capable of supplying continuous paths and also elaborate maneuvers if cluttered environments are involved.
More than forty years ago, Erdős conjectured that for any , every k-uniform hypergraph on n vertices without t disjoint edges has at most max edges. Although this appears to be a basic instance of the hypergraph Turán problem (with a t-edge matching as the excluded hypergraph), progress on this question has remained elusive. In this paper, we verify this conjecture for all . This improves upon the best previously known range , which dates back to the 1970s.
A causal set is a countably infinite poset in which every element is above finitely many others; causal sets are exactly the posets that have a linear extension with the order-type of the natural numbers; we call such a linear extension a natural extension. We study probability measures on the set of natural extensions of a causal set, especially those measures having the property of order-invariance: if we condition on the set of the bottom k elements of the natural extension, each feasible ordering among these k elements is equally likely. We give sufficient conditions for the existence and uniqueness of an order-invariant measure on the set of natural extensions of a causal set.
We discuss the connection between the expansion of small sets in graphs, and the Schatten norms of their adjacency matrices. In conjunction with a variant of the Azuma inequality for uniformly smooth normed spaces, we deduce improved bounds on the small-set isoperimetry of Abelian Alon–Roichman random Cayley graphs.
This paper presents an adaptive force/position controller for a parallel robot executing constrained motions. This controller, based on an MLPNN (or Multi-Layer Perceptron Neural Network), does not require the inverse dynamic model of the robot to derive the control law. A neural identification of the dynamic model of the robot is proposed to determine the principal components of the MLPNN input vector. The latter is used to compensate the dynamic effects arising from the robot–environment interaction and its parameters are adjusted according to an adaptation law based on the Lyapunov-analysis methodology. The proposed controller is evaluated experimentally on the C5 parallel robot. This method is capable of tracking accurately the force/position trajectories and its stability robustness is proved.
Igor Douven establishes several new intransitivity results concerning evidential support. I add to Douven’s very instructive discussion by establishing two further intransitivity results and a transitivity result.
This paper proposes an experimental approach for evaluating the backlash error of an ABB IRB 1600 industrial serial robot under various conditions using a laser interferometer measurement instrument. The effects of the backlash error are assessed by experiments conducted on horizontal and vertical paths. A polynomial model was used to represent the relationship between the backlash error and the robot configuration. A strategy based on statistical tests was developed to choose the degree of polynomial representing the effect of the tool center point (TCP) speed and payload. Results show that the backlash error strongly affects the repeatability of the industrial robot. Statistical analyses prove that the backlash is highly dependent on both robot configuration and TCP speed, whereas it remains nearly unaffected by changes in the payload. It was discovered that the backlash error as measured at the TCP may exceeds 100 μm, and that the positive backlash error increases and the negative backlash error decreases when there is increase in TCP speed.
Exact knowledge of the position and proper calibration of robots that move by wheels form an important foundation in mobile robot applications. In this context, a variety of sensory systems and techniques have been developed for accurate positioning of differential drive mobile robots. This paper, first, provides a brief overview of mobile robots positioning techniques and then, presents a new benchmark method capable of calibrating mobile robots with differential drive mechanisms to correct systematic errors. The proposed method is compared with the commonly used University of Michigan Benchmark (UMBmark) odometry method. Two sets of comparisons are conducted on six prototyped robots with differential drives. The first set of tests establishes the workability and accuracy that can be achieved with the new method and compares them with the ones obtained from the UMBmark technique. The second experiment compares the performance of a mobile robot, calibrated with either the UMBmark or the new method, for an unseen path. It is demonstrated that the proposed method of calibration is simple to implement, and leads to accuracy comparable to the UMBmark method. Specifically, while the error corrections in both methods are within ±5% of each other, the proposed method requires single straight line motion for calibration, which is believed to be simpler and less timely to implement than the square path motion required by the UMBmark technique. The method should therefore be considered seriously as a new tool when calibrating differential drive mobile robots.
This paper deals with processes of optimisation for the design of a four degree-of-freedom robot dedicated to remote ultrasound tele-echography. This robot is designed to track the medical gestures of a remote expert moving an ultrasound probe. The goal is to optimise the kinematic structure by fixing the geometric parameters; these have a significant role in robot configuration singularities, with respect to current medical gestures and mechanism compactness. After choosing a dedicated kinematic structure, several optimisations are presented. Then an optimal choice of geometrical parameters of a global function in relation with kinematic performance indices and compactness is proposed. This robot is soon to be used in the experimental medical phase of the Prosit project.
This article addresses the problem of generating good example contexts to help children learn vocabulary. We describe VEGEMATIC, a system that constructs such contexts by concatenating overlapping five-grams from Google's N-gram corpus. We propose and operationalize a set of constraints to identify good contexts. VEGEMATIC uses these constraints to filter, cluster, score, and select example contexts. An evaluation experiment compared the resulting contexts against human-authored example contexts (e.g., from children's dictionaries and children's stories). Based on rating by an expert blind to source, their average quality was comparable to story sentences, though not as good as dictionary examples. A second experiment measured the percentage of generated contexts rated by lay judges as acceptable, and how long it took to rate them. They accepted only 28% of the examples, but averaged only 27 seconds to find the first acceptable example for each target word. This result suggests that hand-vetting VEGEMATIC's output may supply example contexts faster than creating them manually.
This paper extends a recently proposed singularity analysis method to lower-mobility parallel manipulators having an articulated nacelle. Using screw theory, a twist graph is introduced in order to simplify the constraint analysis of such manipulators. Then, a wrench graph is obtained in order to represent some points at infinity on the Plücker lines of the Jacobian matrix. Using Grassmann–Cayley algebra, the rank deficiency of the Jacobian matrix amounts to the vanishing condition of the superbracket. Accordingly, the parallel singularities are expressed in three different forms involving superbrackets, meet and join operators, and vector cross and dot products, respectively. The approach is explained through the singularity analysis of the H4 robot. All the parallel singularity conditions of this robot are enumerated and the motions associated with these singularities are characterized.
This paper introduces the design and kinematic analysis of a 5-DOF (multiple degree of freedom) hybrid-driven MR (Magnetic Resonance) compatible robot for prostate brachytherapy. It can slip the leash of template and rely on the high precise of MR imaging. After a brief introduction on design requirements of MR compatible robot, a description of our robot structure, material selection, hybrid-driven, and control architecture are presented. Secondly, the forward kinematics equations are obtained according to the equivalent diagram of this robot, and the actual workspace can be outlined. This will help the designer to determine whether this robot can be operated in the MR core without intervention with patient. And then, the inverse kinematics equations combined with trajectory planning are used to calculate the actuators movement. This will help the control system to manipulate the robotic accurately. Finally, vision based experiments on phantoms are used to verify the mechanism precision. As the results shown, the needle tip precision of mechanism is 0.9 mm in the general lab environment.
Reliability of a satellite attitude control system depends on accurate detection of failures in its sensors. This paper presents an observer for robust detection and isolation of a class of failures in satellite attitude sensors. The proposed observer uses measurement of a three-axis gyro together with only one attitude sensor, and generates a residual signal which is sensitive to faults and is simultaneously robust against disturbance and noise. A nonlinear model of satellite kinematics is considered for design of the observer. The structure of the observer is in the form of a delayed continuous-time differential equation ensuring its robustness properties. A realistic simulation is provided to illustrate the performance of the proposed observer in the face of the faults occurring in a magnetometer, as the attitude sensor, and also the faults occurring in the gyro.
This paper exploits a natural symmetry present in a 3D robot in order to achieve asymptotically stable steering. The robot under study is composed of 5-links and unactuated point feet; it has 9 DoF (degree-of-freedom) in the single-support phase and six actuators. The control design begins with a hybrid feedback controller that stabilizes a straight-line walking gait for the 3D bipedal robot. The closed-loop system (i.e., robot plus controller) is shown to be equivariant under yaw rotations, and this property is used to construct a modification of the controller that has a local, but uniform, input-to-state stability (ISS) property, where the input is the desired turning direction. The resulting controller is capable of adjusting the net yaw rotation of the robot over a step in order to steer the robot along paths with mild curvature. An interesting feature of this work is that one is able to control the robot's motion along a curved path using only a single predefined periodic motion.
In this paper, we describe a novel approach to computational modeling and understanding of social and cultural phenomena in multi-party dialogues. We developed a two-tier approach in which we first detect and classify certain sociolinguistic behaviors, including topic control, disagreement, and involvement, that serve as first-order models from which presence the higher level social roles, such as leadership, may be inferred.
R. Murray Schafer's soundscape, predicated on a schizophonic engagement with sound, and Pierre Schaeffer's musique concrète, based on an acousmatic relationship, have for some time been the dominant approaches for those who wish to compose with sounds sourced from the environment. Following Brian Kane and Timothy Morton, this paper critiques the ideologies behind these systems, instead suggesting an approach that uses Deleuze and Guattari's rhizome as a generative metaphor. The Garden of Adumbrations, a multi-channel electroacoustic piece, is used to illustrate several compositional possibilities: the tracing of place through subjectivity, the machinic phylum as emergent intelligence, the interplay between Katharine Norman's self-intended and composer-intended listening, and the encouragement of accidents of listening. Also discussed are Antonin Artaud's Body without Organs, conceptions of Nature and the garden, and Luc Ferrari's Presque rien ou le lever du jour au bord de la mer. The goal is to develop an integrated and sustainable model of sonic practice that addresses the acousmatic while supporting an embedded and non-hierarchical relationship with our ecological milieu.
The history of sonic arts is charged with transgressive practices that seek to expose the social, aural and cultural thresholds across various listening experiences, posing new questions in terms of the dialogue between listener and place. Recent work in sonic art exposes the need for an experiential understanding of listening that foregrounds the use of new personal technologies, environmental philosophy and the subject–object relationship. This paper aims to create a vocabulary that better contextualises recent installations and performances produced within the context of everyday life, by researchers and artists at the Sonic Arts Research Centre at Queen's University Belfast.