To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the previous chapters, we looked at many cipher systems where we spent quite a bit of effort developing techniques (1) to determine what method might have been used to encrypt a given cipher text and, once that was known, (2) to “crack” the cipher and come up with the key. In all these methods, an enemy knowing the encryption key compromises the system as it is an easy step to figure out the decryption key. Likewise, knowing the decryption key allows one to easily recover the encryption key. Such system are sometimes called symmetric ciphers or secret-key ciphers. Furthermore, all these methods are what we might term pencil-and-paper methods, as they can be implemented using only paper and pencil. The methods we are about to examine require the power of computers in order to perform the necessary computations.
In contrast to a secret-key cipher, a public-key cipher is a cipher where the encryption key is made public while the decryption key is kept secret. This allows many people to encrypt a message to the holder of the decryption key. Of course, knowledge of the encryption key in a public-key cipher must not allow someone to recover the decryption key, at least not without a tremendous amount of effort. (Thus all our previous ciphers fail miserably in this regard.) Public-key ciphers are also known as asymmetric ciphers, to distinguish them from symmetric ciphers.
Stochastic resonance (SR) is one of the basic principles intrinsically possessed by any living thing to highly adapt to complicated environments including various disturbances. Although a noise is inevitably mixed by contact with an object and a sensor's movement on it in tactile sensing, a human being can evaluate the several micrometers of unevenness on the object surface by means of SR. We intend to apply SR to tactile sensing and to develop a tactile sensing system capable of measuring an object surface with high precision in not only a controlled environment like a precision measurement room but also in a living environment. First, we investigate the SR characteristic possessed by a Hodgkin–Huxley model capable of emulating squid's neuron activities. According to the simulation results, we develop a new electronic circuit capable of generating the SR. We perform the object surface scan using a linear stage equipped with a tactile sensor and the circuit. A series of object surface scanning tests is repeated while changing the intensity of applied noise, and the signal to noise ratio (SNR, hereafter) is calculated from the obtained measurement data to check the effect of the SR. In the experiment, striped textures with a height of δ = 5 ~ 30 μm are used as specimens. The SNR changes depending on the noise intensity, and the local maximum appears under a proper noise. It is found that the sensing accuracy is improved according to the aforementioned SR theory. Therefore, SR, which is usually applied to noisy environments, is effective for a tactile sensing system.
Isotropic manipulators are generally considered as designs with optimum dexterity. Currently, many 6-DOF (degrees-of-freedom) isotropic parallel manipulators can be developed by numerical or analytical methods. At an isotropic configuration, a manipulator is equidistant from its neighboring singular points. The distance, however, can be very small, so an isotropic design might have relatively smaller singularity-free workspace. This paper presents methods to develop traditional 6-DOF parallel manipulators with better dexterity and larger singularity-free workspace. Some fully symmetric nontraditional designs are then proposed. The evaluation of kinematic properties shows that the fully symmetric designs have very good global dexterity, better rotatability, and relatively larger singularity-free workspace. The manipulators are suitable for some special tasks requiring higher precision, better rotatability, or larger workspace.
Moggi's Computational Monads and Power et al.'s equivalent notion of Freyd category have captured a large range of computational effects present in programming languages. Examples include non-termination, non-determinism, exceptions, continuations, side effects and input/output. We present generalisations of both computational monads and Freyd categories, which we call parameterised monads and parameterised Freyd categories, that also capture computational effects with parameters. Examples of such are composable continuations, side effects where the type of the state varies and input/output where the range of inputs and outputs varies. By considering structured parameterisation also, we extend the range of effects to cover separated side effects and multiple independent streams of I/O. We also present two typed λ-calculi that soundly and completely model our categorical definitions – with and without symmetric monoidal parameterisation – and act as prototypical languages with parameterised effects.
In this paper, nonlinear dynamic equations of a wheeled mobile robot are described in the state-space form where the parameters are part of the state (angular velocities of the wheels). This representation, known as quasi-linear parameter varying, is useful for control designs based on nonlinear ∞ approaches. Two nonlinear ∞ controllers that guarantee induced 2-norm, between input (disturbances) and output signals, bounded by an attenuation level γ, are used to control a wheeled mobile robot. These controllers are solved via linear matrix inequalities and algebraic Riccati equation. Experimental results are presented, with a comparative study among these robust control strategies and the standard computed torque, plus proportional-derivative, controller.
Nested datatypes are families of datatypes that are indexed over all types such that the constructors may relate different family members (unlike the homogeneous lists). Moreover, the argument types of the constructors refer to indices given by expressions in which the family name may occur. Especially in this case of true nesting, termination of functions that traverse these data structures is far from being obvious. A joint paper with A. Abel and T. Uustalu (Theor. Comput. Sci., 333 (1–2), 2005, pp. 3–66) proposed iteration schemes that guarantee termination not by structural requirements but just by polymorphic typing. They are generic in the sense that no specific syntactic form of the underlying datatype “functor” is required. However, there was no induction principle for the verification of the programs thus obtained, although they are well known in the usual model of initial algebras on endofunctor categories. The new contribution is a representation of nested datatypes in intensional type theory (more specifically, in the calculus of inductive constructions) that is still generic and covers true nesting, guarantees termination of all expressible programs, and has an induction principle that allows to prove functoriality of monotonicity witnesses (maps for nested datatypes) and naturality properties of iteratively defined polymorphic functions.
It is well known that, when normalized by n, the expected length of a longest common subsequence of d sequences of length n over an alphabet of size σ converges to a constant γσ,d. We disprove a speculation by Steele regarding a possible relation between γ2,d and γ2,2. In order to do that we also obtain some new lower bounds for γσ,d, when both σ and d are small integers.
Traditionally, decidability of conversion for typed λ-calculi is established by showing that small-step reduction is confluent and strongly normalising. Here we investigate an alternative approach employing a recursively defined normalisation function which we show to be terminating and which reflects and preserves conversion. We apply our approach to the simply typed λ-calculus with explicit substitutions and βη-equality, a system which is not strongly normalising. We also show how the construction can be extended to system T with the usual β-rules for the recursion combinator. Our approach is practical, since it does verify an actual implementation of normalisation which, unlike normalisation by evaluation, is first order. An important feature of our approach is that we are using logical relations to establish equational soundness (identity of normal forms reflects the equational theory), instead of the usual syntactic reasoning using the Church–Rosser property of a term rewriting system.
The paper describes a skiing robot that is capable of skiing autonomously on a ski slope. The robot uses carving skiing technique. Based on a complex sensory system it is capable of autonomously navigating on the ski slope, avoiding obstacles, and maintaining a stable position during skiing on an unknown ski slope. The robot was tested using simulation in a virtual reality environment as well as on a ski slope.
This paper is an investigation of completely mechanical quick changeable joints for multipurpose explosive ordnance disposal (EOD) robots. With the assistance of a quick changeable joint, an ordinary EOD robot becomes a multipurpose robot with an end effector which can be switched during the task. This exchangeable end effector permits the robot to perform more complex duties. Making the joint completely mechanical increases its capacity and decreases its complexity of control and risk of failure. In this paper, the design, manufacturing, and testing stages are explained for four quick changeable joints each possessing different physical working principles. The test results reveal the best design for a multipurpose EOD robot and give ideas for other uses of quick changeable joints. Employing the quick changeable joints in other mobile robot applications can increase a robot's capacity and efficiency.
Systems of polynomial equations over the complex or real numbers can be used to model combinatorial problems. In this way, a combinatorial problem is feasible (e.g., a graph is 3-colourable, Hamiltonian, etc.) if and only if a related system of polynomial equations has a solution.
For an infeasible polynomial system, the (complex) Hilbert Nullstellensatz gives a certificate that the associated combinatorial problem is infeasible. Thus, unless P = NP, there must exist an infinite sequence of infeasible instances of each hard combinatorial problem for which the minimum degree of a Hilbert Nullstellensatz certificate of the associated polynomial system grows.
In the first part of the paper, we show that the minimum degree of a Nullstellensatz certificate for the non-existence of a stable set of size greater than the stability number of the graph is the stability number of the graph. Moreover, such a certificate contains at least one term per stable set of G. In contrast, for non-3-colourability, we proved that the minimum degree of a Nullstellensatz certificate is at least four. Our efforts so far have only yielded graphs with Nullstellensatz certificates of precisely that degree.
In the second part of this paper, for the purpose of computation, we construct new polynomial encodings for the problems of finding in a graph its longest cycle, the largest planar subgraph, the edge-chromatic number, or the largest k-colourable subgraph. We include some applications to graph theory.
A general methodology and associated computational algorithm for predicting postures of the digital human upper body is presented. The basic plot for this effort is an optimization-based approach, where we believe that different human performance measures govern different tasks. The underlying problem is characterized by the calculation (or prediction) of the human performance measure in such a way as to accomplish a specified task. In this work, we have not limited the number of degrees of freedom associated with the model. Each task has been defined by a number of human performance measures that are mathematically represented by cost functions that evaluate to a real number. Cost functions are then optimized, i.e., minimized or maximized, subject to a number of constraints, including joint limits. The formulation is demonstrated and validated. We present this computational formulation as a broadly applicable algorithm for predicting postures using one or more human performance measures.
We perform the asymptotic enumeration of two classes of rooted maps on orientable surfaces: m-hypermaps and m-constellations. For m = 2 they correspond respectively to maps with even face degrees and bipartite maps. We obtain explicit asymptotic formulas for the number of such maps with any finite set of allowed face degrees.
Our proofs combine a bijective approach, generating series techniques related to lattice walks, and elementary algebraic graph theory.
A special case of our results implies former conjectures of Z. Gao.