To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the problem of distance estimation in the context of a mobile camera, as, for example, when the camera is attached to a robot arm. It is natural in this case to consider stereo motion, and we present here the theoretical basis for an axial stereo method based on cross-correlation using the Fast Fourier Transform, which is appropriate in the context considered here. Finally, we describe the state of implementation of the system in our laboratory.
The goal of manufacturing system development today is the integration of basic production elements to suit a variety of industrial and shop floor requirements. This may seem an awesome goal, but the authors suggest that careful assessment of requirement at each level and an appreciation of the true level of complexity needed at each level for control purposes, systematic integration will be possible as products become commercially available.
Six levels of integration can be defined for robot-basedapplications:Level 1 - the single robot application levelLevel 2 - the system with robots working in teamsLevel 3 - the combination of different robot systemsLevel 4 - the combination of feeding work automatically to islands of automation from fully automated warehouses.Level 5 - the integration of planning and control functionsLevel 6 - the integration of CAD based design functions.
The approach to integration and the level to which it extends will to a large extent be determined by a company's objective, present computer capacity, general production capability and availability of appropriate flexible automation products and systems for use in a given industrial environment. This paper examines the global needs of hierarchical integration, the level of control needed and the implication of VAL-II to this end.
This paper describes the generation of profiles of jaws of robot grippers for holding parallel-sided workpieces. The profiles are effectively ruled surfaces. The line segments of the ruled surfaces are designed to contact workpieces of different thicknesses. The optimum design of these gripping surfaces is considered in this paper
We describe an approach that generates a complete b-rep description of a polyhedral object from (geometric primitives derived from) dense range images taken from multiple view-points. Our approach, starting from basic face models of visible surfaces of objects in each local view, matches certain geometric features, extracts rigid-body transformations that relate the local views, and incrementally merges the face models (in local views) into a global 3-dimensional b-rep description of the object. A convenient and effective termination criterion is designed to monitor the merging process. The emphasis is on the use of geometric constraints in building a complete 3-dimensional model of the object.
We have implemented this system in C, running on a SUN Sparcstation. The system, as presented, has been tested on face models derived from several synthetic and real range images and performs successfully with realistic noise levels.
Computer Integrated Manufacture (CIM) is concerned with providing computer assistance, control and high level integrated automation at all levels of the manufacturing industries, including the business data processing system, CAD, CAM and FMS, by linking islands of automation into a distributed processing system. The technology applied in CIM makes intensive use of distributed computer networks and data processing techniques, Artificial Intelligence and Database Management Systems. FMS in this aspect plays the role of a highly efficient and “ready to react to random requests” manufacturing facility (e.g. machining, test, assembly, welding, etc.) in this “total concept”. (Figure 1)
This paper describes an algorithm which recognizes the position and the orientation of a structural industrial part, such as a crankshaft, utilizing the relationships between its elementary blobs. Crankshafts are arranged tightly and piled up in multiple layers and their image from above includes regions (i.e. pictures) of crankshafts not only of the current top layer but also of the lower ones; it thus becomes complicated. First, the algorithm carries out the connectivity analysis for an input binary image, and then extracts elementary blobs by applying a line fitting procedure on every sequence of boundary pixels of connected regions. Next, each blob is judged to determine to which component of a part it corresponds, using the size model. Then the relationships (distances and orientations) between blobs are examined, using their relational models, and a group of blobs of one part is recognized. Its position and orientation are calculated simultaneously. This model matching algorithm is implicitly included in the procedures.
John Searle's attack on various interpretations of Artificial Intelligence has been the most thorough challenge to the philosophical foundations of Artificial Intelligence. In this paper we attempt to contribute to a growing body of argument as to why Searle is mistaken in his attack. We propose an analogy between intelligent objects and flying objects, leading to a definition of Artificial Intelligence similar to that of aerodynamics, but one which attempts to present general laws of intelligence in man and machines alike.
For a robotic workcell with multiple robots, several interconnection methods are presented in terms of a processor-based architecture. The concept of the multiple processor system (MPS) or multiple computer system (MCS) is used to formulate and analyze the multi-robot interconnection system (MRIS). The MRIS is modelled as a queueing network, and mathematical analysis is done on the basis of modelling. Performance evaluation is achieved for the MRIS through the mean value analysis with the response time and the probability of service failure under different workloads. The results together with some comments suggest a useful guideline for a selecting an appropriate interconnection method for the MRIS subject to the system environment and application.