To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents an example of the application of geometric and algebraic approaches to the inverse kinematics problem of four-link robot manipulators. A special arm configuration of the robot manipulator is employed for solving the inverse kinematics problem by using the geometric approach. The obtained joint variables as angular positions are defined in the form of cubic polynomials. The other kinematic parameters of the joints, such as angular velocities and angular accelerations, are the time derivatives of these polynomials. It is evident that there is no definite difference between the results of the two approaches. Consequently, if an appropriate arm configuration for the geometric approach can be established, the inverse kinematics can be solved in a simpler and shorter way.
A direct subspace of a dynamic three-dimensional joint space is found to be useful for robot path planning in workspaces comprised of both static and dynamic objects. Dynamic descriptions permit positioning tables, automated guided vehicles, conveyors and cycling machine tools to be modeled by elements which translate or cycle along rectilinear paths. Graphical path planning procedures use cursor indicators to move the robot configuration point between the desired starting and final configurations while avoiding both the static and dynamic joint space obstacles.