To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper describes the Robotics and Intelligent Systems Program (RISP) at the Oak Ridge National Laboratory (ORNL). RISP is a focal point at ORNL for studies in robotics, teleoperations, and related aspects of intelligent machines, such as artificial intelligence, neural networks, and parallel computing. RISP research is intended to minimize human error through automation of repetitive, dull, and routine tasks; to minimize human risk by allowing effective remote operation in hazardous environments; to optimize cooperation of humans and machines; and to cope effectively with emergency situations where fast response is essential.
Current industrial robots are highly non-linear systems. However, the control strategies in most commercially available robots largely ignore the non-linearity. The resulting linear approximations are only valid at low speeds. Any improvement would allow robots to move faster and hence be more productive. There has been much academic research into robot control, but this has almost always separated the control and the trajectory planning. In this work we seek to combine these tasks and hence simplify the computations required. We investigate how to control a general robot in such a way that it's gripper follows straight line, circular or helical paths. These simple paths are both one parameter subgroups for the group of proper rigid motions and geodesies for certain metrics on the group. This suggests a non-linear feedback control law which turns the closed loop dynamics of the robot into the equations for geodesies. Although these equations are not completely stable we are able to modify the control law so that the resulting closed loop dynamics are stable. Hence, the end-effector of the robot will follow straight line, helical or circular trajectories.
The kinematic control of a planar manipulator with several-degrees of redundancy has been a difficult problem because of the heavy computational burden and/or lack of appropriate techniques. The extended motion distribution scheme, which is based on decomposing a planar redundant manipulator into a series of nonredundant/redundant local arms (referred to as subarms) and distributing the motion of an end-effector to subarms at the joint velocity level, is proposed in this paper. The configuration index, which is defined as the product of minors corresponding to subarms in the Jacobian matrix, is used to globally guide the redundant manipulators. To enhance the performance of the proposed scheme, a self-motion control, which handles the internal joint motion that does not contribute to the end-effector motion, can be used optionally to guarantee globally optimal manipulation. The repeatability problem for the redundant manipulators is discussed using the proposed scheme. The results of computer simulations are shown and analyzed in detail for planar 8-DOF and 9-DOF manipulators, as examples.
This paper illustrates means by which the techniques of compliance and electroadhesion can, using electror-heological, and other fluids, be combined to provide very effective shape adaptive robot end-effectors and similar holding surface.
The dynamics of sensors operated devices such as Automated Mobile Robots and more generally automated target seeking devices is studied in presence of noise. We introduce a simple and analytically tractable class of dynamics which permits to classify qualitatively and somehow quantitatively also the approach to the targets when fluctuations corrupt the ideal trajectories. Our model constitute a first evaluation of the feasibility of an efficient approach when the parameters of the model (statistics of the noise, lengths of the path and progressing steps and heading velocity) are known.
This paper discusses those study themes considered essential in responding to the expectations that are mostly likely to be generated by Japanese society in regard to robots in the coming one or two decades.
First, for the purpose of understanding the current structure and status of research and development concerning robotics, statistical data based on the responses obtained from universities and national and public research institutes will be shown together with an illustration of the recent patent trends related to industrial robots. Then, an overview on the results of forecasts regarding robot technology by governmental bodies will be presented in an effort to predict the technological as well as social needs surrounding robots. Lastly, tasks of high contribution value for society requiring large-scale research and development systems will be both identified and clarified.
This paper is related to the problem of navigation of a mobile robot amidst obstacles. In order to easily take into account any modification of the environment, we propose a very simple representation of the obstacles, based on the use of rectangles, as well as a matrix description of the spatial relationships between the obstacles. We also present a path planner based on a A* algorithm, the features of which are specifically designed for our world of rectangles. The cost function takes into account both the length of the path and the number of turns. Some experimental results and implementation details are also given in this paper.
Robot intensiveness in the manufacturing industry is growing rapidly, but the construction industry has been slow to capitalise on the array of robotic technology now available. An attempt is made to indentify various robot ensembles that may prove economically viable in building construction, and to configure these in such a way that particular characteristics of robot work methods are used to maximum advantage within the constraints of the construction environment.
The development of robot languages has followed a pattern similar to that of conventional programming languages, where robot languages have been based on an existing programming language. This paper first identifies the use of an existing base as one way of developing robot programming languages, and discusses the areas of difficulty in this approach. Then, on-line and off-line programming of robots is discussed and the requirements of robot programming languages that are different to those of non-specialised programming languages are presented. A discussion and evaluation of some programming languages in terms of their appropriateness for use as the base for an intelligent robot programming language is presented. This leads to the conclusion that no current language forms an adequate base for intelligent robot programming languages. What is needed as a base is a language for use in the artificial intelligence domain, that incorporates real-time facilities.