To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We combine the principles of the Floyd-Warshall-Kleene algorithm, enriched categories, and Birkhoff arithmetic, to yield a useful class of algebras of transitive vertex-labeled spaces. The motivating application is a uniform theory of abstract or parametrized time in which to any given notion of time there corresponds an algebra of concurrent behaviors and their operations, always the same operations but interpreted automatically and appropriately for that notion of time. An interesting side application is a language for succinctly naming a wide range of datatypes.
Erwin Engeler was born in Schaffhausen on 13 February 1930 a citizen of Wagenhausen (Thurgovia). He attended school in Diessenhofen (TG) and Schaffhausen and looks back on his various schools warmly as having provided a conducive environment. His schoolwork also left him time for other activities. For one, he pursued a career as a boy scout which he crowned by attaining the position of Rover Commissary of all Thurgovia. For another, he was an avid client of the municipal library of Schaffhausen. One book which he found there was Hilbert-Bernays' ‘Grundlagen der Mathematik’. One wonders what Erwin would have said if a soothsayer had told him that the author's own copy would one day be passed on to him by the late Bernays' family.
The notion of a dynamic labeled 2-structure(dℓ2s) is introduced and investigated. It generalizes the notion of a labeled 2-structure (ℓ2s) (Ehrenfeucht and Rozenberg 1990), by making it possible to change the (label) relationships between the nodes. This is achieved by storing in the nodes of a ℓ2s output and input functions that can change the outgoing and incoming labels, respectively. The notion of a clan, which is central in the theory of ℓ2s's is transferred to the framework of dℓ2s's, and the basic properties of clans of dℓ2s's are investigated.
We add extensional equalities for the functional and product types to the typed λ-calculus with, in addition to products and terminal object, sums and bounded recursion (a version of recursion that does not allow recursive calls of infinite length). We provide a confluent and strongly normalizing (thus decidable) rewriting system for the calculus that stays confluent when allowing unbounded recursion. To do this, we turn the extensional equalities into expansion rules, and not into contractions as is done traditionally. We first prove the calculus to be weakly confluent, which is a more complex and interesting task than for the usual λ-calculus. Then we provide an effective mechanism to simulate expansions without expansion rules, so that the strong normalization of the calculus can be derived from that of the underlying, traditional, non-extensional system. These results give us the confluence of the full calculus, but we also show how to deduce confluence directly form our simulation technique without using the weak confluence property.
In this paper, we investigate several logical frameworks whose expressiveness lies between Conditional Equational Logic and Horn Clause Logic. The main result deals with the PART-construction, which interprets total based algebras as partial algebras. This construction can be viewed as a simulation of Horn Clause Theories by means of Conditional Equational Theories. Other constructions in other frameworks are extendable to simulations in a similar way. The notion of categorical retractive simulation captures some essential properties of these, which allows us to measure the equivalence and difference between institutions.
It is the contention of the author that there is a preferred categorical structure appropriate for the analysis of imperative programming languages, namely the existence of finite sums and products and a distributive law of products over sums. An imperative language based on these operations is described.
The notions of weak Cartesian closed category and very weak CCC are introduced by dropping the extensionality (and the naturality) requirements in the adjunction defining the closed structure of a CCC. A number of specific examples of these categories are given. The weak notions are shown to be equivalent from both the semantic and syntactic standpoint to the typed non-extensional lambda-calculus and to the typed Combinatory Logic, extended with surjective pairs. Type-free models are characterized as reflexive objects in wCCCs. Finally, categorical models for the second-order non-extensional calculus are defined, by introducing a simple generalization of the notion of PL-category.
This paper uses concepts from sheaf theory to explain phenomena in concurrent systems, including object, inheritance, deadlock, and non-interference, as used in computer security. The approach is very; general, and applies not only to concurrent object oriented systems, but also to systems of differential equations, electrical circuits, hardware description languages, and much more. Time can be discrete or continuous, linear or branching, and distribution is allowed over space as well as time. Concepts from categpru theory help to achieve this generality: objects are modelled by sheaves; inheritance by sheaf morphisms; systems by diagrams; and interconnection by diagrams of diagrams. In addition, behaviour is given by limit, and the result of interconnection by colimit. The approach is illustrated with many examples, including a semantics for a simple concurrent object-based programming language.
We show that, aside from the semiring equations, three equations and two equation schemes characterize the semiring of regular sets with the Kleene star operation.
A new correctness criterion for discriminating Proof Nets among Proof Structures of Multiplicative Linear Logic with the MIX rule is provided. This criterion is inspired by an original interpretation of Proof Structures as distributed systems, and logical formulae as processes. The computation inside a system corresponds to the logical flow of information inside a proof, that is, roughly speaking, a distributed version of Girard's token trip. Proof Nets are then characterised as deadlock free Proof Structures (deadlock free distributed systems). This result follows by explicitly considering the causal dependencies among logical formulae inside proofs, and it provides a new understanding of notions such as acyclicity, chains and empires in terms of concurrent computations.
The type-theoretic explanation of modules proposed to date (for programming languages like ML) is unsatisfactory, because it does not capture that the evaluation of type-expressions is independent from the evaluation of program expressions. We propose a new explanation based on ‘programming languages as indexed categories’ and illustrate how ML can be extended to support higher order modules, by developing a category-theoretic semantics for a calculus of modules with dependent types. The paper also outlines a methodology, which may lead to a modular approach in the study of programming languages.
In a PCF-like call-by-name typed λ-calculus with a minimal fixpoint operator, ‘parallelor’, Plotkin's ‘continuous existential quantifier’ ∃ and recursive types together with constructors and destructors, all computable objects can be denoted by terms of the programming language. According to A. Meyer's terminology (cf. Meyer (1988)), such a programming language is called universal in the sense that any extension of it must be conservative, as all computable objects can already be expressed by program terms.
As a byproduct, we get that, in principle, recursive types could be totally avoided, as they appear as syntactically expressible retracts of the non-recursive type → , where and are the flat domains of natural numbers and boolean values, respectively.
Dynamic programming is a strategy for solving optimisation problems. In this paper, we show how many problems that may be solved by dynamic programming are instances of the same abstract specification. This specification is phrased using the calculus of relations offered by topos theory. The main theorem underlying dynamic programming can then be proved by straightforward equational reasoning.
The generic specification of dynamic programming makes use of higher-order operators on relations, akin to the fold operators found in functional programming languages. In the present context, a data type is modelled as an initial F-algebra, where F is an endofunctor on the topos under consideration. The mediating arrows from this initial F-algebra to other F-algebras are instances of fold – but only for total functions. For a regular category ε, it is possible to construct a category of relations Rel(ε). When a functor between regular categories is a so-called relator, it can be extended (in some canonical way) to a functor between the corresponding categories of relations. Applied to an endofunctor on a topos, this process of extending functors preserves initial algebras, and hence fold can be generalised from functions to relations.
It is well-known that the use of dynamic programming is governed by the principle of optimality. Roughly, the principle of optimality says that an optimal solution is composed of optimal solutions to subproblems. In a first attempt, we formalise the principle of optimality as a distributivity condition. This distributivity condition is elegant, but difficult to check in practice. The difficulty arises because we consider minimum elements with respect to a preorder, and therefore minimum elements are not unique. Assuming that we are working in a Boolean topos, it can be proved that monotonicity implies distributivity, and this monotonicity condition is easy to verify in practice.
We consider the following two properties of a functor F from a presheaf topos to the category of sets: (a) F preserves connected limits, and (b) the Artin glueing of F is again a presheaf topos. We show that these two properties are in fact equivalent. In the process, we develop a general technique for associating categorical properties of a category obtained by Artin glueing with preservation properties of the functor along which the glueing takes place. We also give a syntactic characterization of those monads on Set whose functor parts have the above properties, and whose units and multiplications are cartesian natural transformations.