To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Stroke is a common condition resulting in 30,000 people per annum left with significant disability. In patients with severe arm paresis after stroke, functional recovery in the affected arm is poor. Inadequate intensity of treatment is cited as one factor accounting for the lack of arm recovery found in some studies. Given that physical therapy resource is limited, strategies to enhance the physiotherapists' efforts are needed. One approach is to use robotic techniques to augment movement therapy.
A three degree-of-freedom pneumatic robot has been developed to apply physiotherapy to the upper limb. The robot has been designed with a workspace encompassing the reach-retrieve range of the average male. Control experiments have applied force and then position only controllers to the pneumatic robot. These controllers are combined to form a position-based impedance control strategy on all degrees of freedom of the robot. The impedance controller performance was found to be dependent upon the specified impedance parameters. Initial experiments attaching the device to human subjects have indicated great potential for the device.
Due to the increasing popularity of surveillance and security systems, the problem of automatically tracking a moving target by visual servoing has become a research topic deserving more investigation. Nonetheless, the success of tracking a moving target in real-time primarily depends on the performance of the motion detection techniques employed. This paper addresses visual tracking control of an unknown target that could be motional arbitrarily in the scene. A pan-tilt mechanism is used to gain the flexibility of tracking, and the so-called region-based matching method and motion energy method are modified and proposed in this study to detect a moving target based on the consecutive images acquired. A visual servo control scheme that adopts proportional control in the visual loop for reducing the servo lagging is proposed using output disturbance feedforward compensation. Experimental results show the superiority of the proposed method in achieving high system bandwidth and tracking accuracy.
KNOWLEDGE REPRESENTATION, REASONING AND DECLARATIVE PROBLEM SOLVING, by Chitta Baral, University Press, Cambridge, 2003, xiv+530 pp., ISBN 0-521-81802-8 (Hbk, £60.00).
We propose a simple quasi time optimal control law for a gantry crane with a payload. The force applied to the trolley is a controlling parameter. The control law consists of two parts: a feedforward term and a trolley position and velocity feedback term.
Initially, we synthesize the feedforward term and the corresponding reference trajectory by computing the time optimal control for the system mass center. The computed optimal control is a discontinuous function of time with several switching time instants. Undesirable large vibrations due to the payload sway appear under this control. Therefore, we transform this control, replacing its jumps by the piecewise linear continuous functions. The computed feedforward term and the reference trajectory are used as input signals of the PD-controller.
A binary walking robot moves as a result of bi-state actuator transitions. Because of the bi-state nature of binary joints, many research results about continuous walking robots cannot be applied to binary walking robots directly. In this paper, a new and simple model of rigid-link binary walking robot is proposed, around which related concepts are introduced, and formulas are derived. Based on this model, general characteristics and limitations of periodic gaits are discussed, and the stability qualities of several straight-line walking periodic gaits are studied in both pitch-greater-than-stroke and stroke-greater-than-pitch cases. Valuable results are obtained from the analysis, which should be followed in the design of rigid-link binary walking robots.
Today, in robot applications continuous paths often result from CAD or other planning tools. We present here an approach to the question that has been discussed for a long time, i.e. how to approximate a given path by a second one in such a way that the latter lies in a tube of given radius ε around the first. The approximation should be a (normally cubic) spline with a small number of breakpoints. The strategy is based on algorithms used in “computer aided geometric design” and is applied to examples from industrial and surgical robotics.
Manipulators with 3-RSR topology are three-degree-of-freedom parallel manipulators that may be either spherical or mixed-motion manipulators. The inverse position analysis (IPA) and the workspace determination of 3-RSR manipulators are addressed by means of a new approach. The new approach is centered on a particular form of the closure equations called compatibility equations. The compatibility equations contain only the six coordinates (end-effector coordinates) which locates the end-effector pose (position and orientation) with respect to the frame, and the geometric constants of the manipulator. When the manipulator geometry is assigned, the common solutions of the compatibility equations are the end-effector coordinates which identify the end-effector poses belonging to the manipulator workspace. Moreover, they can be the starting point to easily solve the IPA. The presented compatibility equations can be also used to solve the position synthesis of the 3-RSR manipulator. This way of solving the position synthesis will demonstrate that only approximated solutions exist when more than eight end-effector poses are given.
This paper concerns the presentation and analysis of a type of three translational degrees of freedom (DoFs) parallel cube-manipulator. The parallel manipulators are the topology architectures of the DELTA robot and Tsai's manipulator, respectively, which have three translational DoFs. In the design, the three actuators are arranged according to the Cartesian coordinate system, which means that the actuating directions are normal to each other, and the joints connecting to the moving platform are located on three sides of a cube, for such reason we call this type of manipulator the parallel cube-manipulator. The kinematics problems, singularity, workspace, compliance characteristic of the manipulator are investigated in the paper. The analysis results show that the manipulators have the advantages of no singularities in the workspace, relatively more simple forward kinematics, and existence of a compliance center. The parallel cube-manipulator can be applied to the fields of micro-motion manipulators, remote center compliance (RCC) devices, assembly, and so on.
We present a calculus of mobile processes without prefix or summation, called the solos calculus. Using two different encodings, we show that the solos calculus can express both action prefix and guarded summation. One encoding gives a strong correspondence, but uses a match operator; the other yields a slightly weaker correspondence, but uses no additional operators. We also show that the expressive power of the solos calculus is still retained by the sub-calculus where actions carry at most two names. On the other hand, expressiveness is lost in the solos calculus without match and with actions carrying at most one name.
The Asynchronous $\pi$-calculus, proposed in Honda and Tokoro (1991) and, independently, in Boudol (1992), is a subset of the $\pi$-calculus (Milner et al. 1992), which contains no explicit operators for choice and output prefixing. The communication mechanism of this calculus, however, is powerful enough to simulate output prefixing, as shown in Honda and Tokoro (1991) and Boudol (1992), and input-guarded choice, as shown in Nestmann and Pierce (2000). A natural question arises, then, as to whether or not it is as expressive as the full $\pi$-calculus. We show that this is not the case. More precisely, we show that there does not exist any uniform, fully distributed translation from the $\pi$-calculus into the asynchronous $\pi$-calculus, up to any ‘reasonable’ notion of equivalence. This result is based on the incapability of the asynchronous $\pi$-calculus to break certain symmetries that may be present in the initial communication graph. By similar arguments, we prove a separation result between the $\pi$-calculus and CCS, and between the $\pi$-calculus and the $\pi$-calculus with internal mobility, a subset of the $\pi$-calculus proposed by Sangiorgi where the output actions can only transmit private names.
Concrete computing machines, either sequential or concurrent, rely on an intimate relationship between computation and time. We recall the general characteristic properties of physical time and of present realisations of computing systems. We emphasise the role of computing interferences, that is, the necessity of avoiding them in order to give a causal implementation to logical operations. We compare synchronous and asynchronous systems, and give a brief survey of some methods used to deal with computing interferences. Using a graphic representation, we show that synchronous and asynchronous circuits reflect the same opposition as the Newtonian and relativistic causal structures for physical space-time.
We consider the Pure Safe Ambient Calculus, which is Levi and Sangiorgi's Safe Ambient Calculus (a variant of Cardelli and Gordon's Mobile Ambient Calculus) restricted to its mobility primitives – in particular, we focus on its expressive power. Since it has no form of communication or substitution, we show how these notions can be simulated by mobility and modifications in the hierarchical structure of ambients. As a main result, we use these techniques to design an encoding of the synchronous $\pi$-calculus into pure ambients, and we study its correctness, thus showing that pure ambients are as expressive as the $\pi$-calculus. In order to simplify the proof and give an intuitive understanding of the encoding, we design an intermediate language, the $\pi$-Calculus with Explicit Substitutions and Channels, which is an extension of the $\pi$-calculus in which communication and substitution are broken into simpler steps, and we show that is has the same expressive power as the $\pi$-calculus.
In this paper an algorithm for designing spatial parallel manipulator parameters for a given workspace has been presented. At the beginning, architecture has been chosen that describes a general parallel manipulator. The manipulator may possess any number of limbs, consisting of links connected by spherical, revolute or linear joints as well as actuators. The parameters, which will be determined, are the lengths of the links of kinematic chains, the coordinates of the fixing points of the chains to the platform and the base, and orientations of the revolute engines axes situated at the base. The workspace may be specified in the form of any shape in the space containing a set of points of known coordinates and the limits in which the geometrical parameters may vary. The algorithm does not determine the exact values of the parameters, but only their functions. It leads to the necessity for further research in order to optimise the solutions.
This paper presents a method for synthesising the joint profiles for a planar five-link biped walking on flat ground. Both single support and double support phases are considered. The joint profiles have been determined based on constraint equations cast in terms of step length, step period, maximum step height and so on. A special constraint equation is developed to eliminate the destabilising effect of the impact (heel strike) occurring in the system. Other advantages of our joint profiles include system stability during the double support phase and repeatability of gait. The method of formulating compatible trajectories of the hip and swing limb is employed. We demonstrate the advantages of this method over the one of direct formulation of the joint profiles in that it not only significantly simplifies the problem by de-coupling the biped into three subsystems (a trunk and two lower limbs), but also allows the incorporation of certain constraints without drastically increasing the complexity of the constraint equations. The effectiveness of the proposed method is demonstrated using computer simulations. We believe that this research can provide a valuable tool for generating motion patterns of bipedal gait.
It is well known that, given an endofunctor H on a category C , the initial (A+H-)-algebras (if existing), i.e. , the algebras of (wellfounded) H-terms over different variable supplies A, give rise to a monad with substitution as the extension operation (the free monad induced by the functor H). Moss [17] and Aczel, Adámek, Milius and Velebil [12] have shown that a similar monad, which even enjoys the additional special property of having iterations for all guarded substitution rules (complete iterativeness), arises from the inverses of the final (A+H-)-coalgebras (if existing), i.e. , the algebras of non-wellfounded H-terms. We show that, upon an appropriate generalization of the notion of substitution, the same can more generally be said about the initial T'(A,-)-algebras resp. the inverses of the final T'(A,-)-coalgebras for any endobifunctor T' on any category Csuch that the functors T'(-,X) uniformly carry a monad structure.
Motivated by some examples from functional programming, we propose ageneralization of the notion of trace to symmetric premonoidalcategories and of Conway operators to Freyd categories. We show thatin a Freyd category, these notions are equivalent, generalizing awell-known theorem relating traces and Conway operators in Cartesiancategories.
We investigate a Gentzen-style proof system for the first-order μ-calculusbased on cyclic proofs, produced by unfolding fixed point formulasand detecting repeated proof goals. Our system uses explicit ordinalvariables and approximations to support a simple semantic inductiondischarge condition which ensures the well-foundedness of inductivereasoning. As the main result of this paper we propose a new syntacticdischarge condition based on traces and establish its equivalencewith the semantic condition. We give an automata-theoretic reformulationof this condition which is more suitable for practical proofs. Fora detailed comparison with previous work we consider two simpler syntacticconditions and show that they are more restrictive than our new condition.
The basic framework of domain μ-calculus was formulated in [39] more than ten years ago.This paper provides an improved formulation of a fragment of the μ-calculus without function space or powerdomain constructions,and studies some open problemsrelated to this μ-calculus such asdecidability and expressive power.A class of language equations is introducedfor encoding μ-formulas in order toderive results related to decidability and expressive power of non-trivial fragments of the domain μ-calculus.The existence and uniqueness of solutions tothis class of language equations constitute an important component of this approach.Our formulation is based on the recent work of Leiss [23], who established a sophisticated framework for solving language equationsusing Boolean automata(a.k.a. alternating automata [12,35]) and a generalized notion of language derivatives.Additionally, the early notion of even-linear grammars is adopted here totreat another fragment of the domain μ-calculus.
Algebraic systems of equations define functions using recursion where parameter passing is permitted. This generalizes the notion of a rational system of equations where parameter passing is prohibited. It has been known for some time that algebraic systems in Greibach Normal Form have unique solutions. This paper presents a categorical approach to algebraic systems of equations which generalizes the traditional approach in two ways i) we define algebraic equations for locally finitely presentable categories rather than just Set; and ii) we define algebraic equations to allow right-hand sides which need not consist of finite terms. We show these generalized algebraic systems of equations have unique solutions by replacing the traditional metric-theoretic arguments with coalgebraic arguments.