To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This book is an attempt to fill a gap that has existed since the dawn of XAFS: to provide a broad and sufficiently deep introduction for graduate students and other researchers, to enable them to quickly learn the disparate things that are needed to do XAFS research in a reliable way. The broad applicability of the XAFS technique draws researchers with a variety of backgrounds who are not specialists in the technique. There needs to be an accessible resource by which they can learn the essentials in a reasonably efficient and comprehensive way.
I have been doing XAFS research for more than 30 years, starting out in the laboratory of Edward Stern at the University of Washington. My work has involved applications and methods development; experiment, theory, computation; synchrotron instrumentation, and construction and operation of synchrotron facilities. I have learned a great deal from Ed Stern, John Rehr, Dale Sayers, Steve Heald, Farrel Lytle, Bruce A. Bunker, Gerd Rosenbaum, and many other colleagues and students too numerous to list, to whom I express my gratitude. I also would like to express my gratitude to my family for their patience and support while I have been occupied nights, weekends, and holidays in writing this book; my brother, Bruce, for originally getting me involved in XAFS; and to my parents, now both deceased, for their unwavering support of the study, appreciation, and preservation of nature.
This book covers basic material, occasionally dipping a toe into deeper waters.
Modern technology depends on materials with precisely controlled properties. Ion beams are a favoured method to achieve controlled modification of surface and near-surface regions. In every integrated circuit production line, for example, there are ion implantation systems. In addition to integrated circuit technology, ion beams are used to modify the mechanical, tribological and chemical properties of metal, intermetallic and ceramic materials without altering their bulk properties. Ion–solid interactions are the foundation that underlies the broad application of ion beams to the modification of materials. This text is designed to cover the fundamentals and applications of ion–solid interactions and is aimed at graduate students and researchers interested in electronic devices, surface engineering, reactor and nuclear engineering and material science issues associated with metastable phase synthesis.
This is a fully revised and expanded edition of a very successful and widely used book. It describes the physical basis of all the principal, and most of the more specialised, techniques currently employed in the study of well-characterised solid surfaces. The coverage of each technique, illustrated with selected examples, is underpinned by discussion of the relevant physical principles, and the complementary aspects of the various methods are also described. Throughout, the emphasis is on understanding the concepts involved, rather than on an exhaustive review of applications. The book will be of great use to final year undergraduate and postgraduate students in physics, chemistry and materials science. It will also be valuable to established researchers in any area of surface science concerned with the acquisition and analysis of experimental data.
This book, together with its companion volume The Science of Crystallization: Microscopic Interfacial Phenomena, make up a complete course that will teach an advanced student how to understand and analyse scientifically any of the phenomena that are observed during natural or technological crystallization from any medium and via any technique. It is an advanced text that goes into considerable detail concerning the many elements of knowledge needed to understand both quantitatively and qualitatively a crystallization event. Both the present book and its companion volume are sufficiently broad to provide the scientific basis necessary to address any area of application. The book and its companion can be used independently of each other, and together they provide the basis for advanced courses on crystallization in departments of materials science, metallurgy, electrical engineering, geology, chemistry, chemical engineering and physics. In addition the books will be invaluable to scientists and engineers in the solid state electronics, optoelectronics, metallurgical and chemical industries involved in any form of crystallization and thin film formation.
The theory of how metals conduct electronically had for a long time been confined to metals that are crystalline with the constituent atoms in regular arrays. The discovery of how to make solid amorphous alloys led to an explosion of measurements of the electronic properties of these new materials, and the emergence of a range of interesting low temperature phenomena. This 1995 book describes in physical terms the theory of the electrical conductivity, Hall coefficient, magnetoresistance and thermopower of disordered metals and alloys. The author begins by showing how conventional Boltzmann theory can be extended and modified when the mean free path of the conduction electrons becomes comparable with their wavelength and interionic separation. The consequence of this is explored and the theory tested by application to experimental data on metallic glasses. Designed as a self-contained review, the book will appeal to non-specialist physicists, metallurgists and chemists with an interest in disordered metals.
Understanding viscoelasticity is pertinent to design applications as diverse as earplugs, gaskets, computer disks, satellite stability, medical diagnosis, injury prevention, vibration abatement, tire performance, sports, spacecraft explosions, and music. This book fits a one-semester graduate course on the properties, analysis, and uses of viscoelastic materials. Those familiar with the author's precursor book, Viscoelastic Solids, will see that this book contains many updates and expanded coverage of the materials science, causes of viscoelastic behavior, properties of materials of biological origin, and applications of viscoelastic materials. The theoretical presentation includes both transient and dynamic aspects, with emphasis on linear viscoelasticity to develop physical insight. Methods for the solution of stress analysis problems are developed and illustrated. Experimental methods for characterization of viscoelastic materials are explored in detail. Viscoelastic phenomena are described for a wide variety of materials, including viscoelastic composite materials. Applications of viscoelasticity and viscoelastic materials are illustrated with case studies.
This text deals from a fundamental viewpoint with the behaviour of polymers at surfaces and interfaces. Topics covered include the nature and properties of the surface of a polymer melt, the structure of interfaces between different polymers and between polymers and non-polymers, the molecular basis of adhesion, and the properties of polymers at liquid surfaces. Emphasis is placed on the underlying physical principles. Statistical mechanics models of the behaviour of polymers near interfaces are introduced, with the emphasis on theory that is tractable and applicable to experimental situations. Advanced undergraduates, graduate students and research workers in physics, chemistry and materials science with an interest in polymers will find this book of value.
Liquid metals remain of both fundamental and technological interest and the concepts needed to understand their properties are set out in this book, starting from a survey of the basic experimental facts to be explained. The quantitative theory of liquid pair correlation functions, effective ion-ion interactions, thermodynamic properties and electronic and atomic transport is then developed. The book goes on to discuss inelastic neutron scattering, critical behaviour, magnetism, the liquid/metal surface, binary liquid metal alloys, the two component theory of pure liquid metals, shock wave studies, liquid hydrogen plasmas and the constitution of giant planets.
In this book the theories, techniques and applications of reflection electron microscopy (REM), reflection high-energy electron diffraction (RHEED) and reflection electron energy-loss spectroscopy (REELS) are comprehensively reviewed for the first time. The book is divided into three parts: diffraction, imaging and spectroscopy. The text is written to combine basic techniques with special applications, theories with experiments, and the basic physics with materials science, so that a full picture of RHEED and REM emerges. An entirely self-contained study, the book contains much invaluable reference material, including FORTRAN source codes for calculating crystal structures data and electron energy loss spectra in different scattering geometries. This and many other features make the book an important and timely addition to the materials science literature.
This is an advanced text for higher degree materials science students and researchers concerned with the strength of highly brittle covalent–ionic solids, principally ceramics. It is a reconstructed and greatly expanded edition of a book first published in 1975. The book presents a unified continuum, microstructural and atomistic treatment of modern day fracture mechanics from a materials perspective. Particular attention is directed to the basic elements of bonding and microstructure that govern the intrinsic toughness of ceramics. These elements hold the key to the future of ceramics as high-technology materials - to make brittle solids strong, we must first understand what makes them weak. The underlying theme of the book is the fundamental Griffith energy-balance concept of crack propagation. The early chapters develop fracture mechanics from the traditional continuum perspective, with attention to linear and nonlinear crack-tip fields, equilibrium and non-equilibrium crack states. It then describes the atomic structure of sharp cracks, the topical subject of crack-microstructure interactions in ceramics, with special focus on the concepts of crack-tip shielding and crack-resistance curves, and finally deals with indentation fracture, flaws, and structural reliability.
The focused ion beam (FIB) system is an important tool for understanding and manipulating the structure of materials at the nanoscale. Combining this system with an electron beam creates a DualBeam - a single system that can function as an imaging, analytical and sample modification tool. Presenting the principles, capabilities, challenges and applications of the FIB technique, this edited volume, first published in 2007, comprehensively covers the ion beam technology including the DualBeam. The basic principles of ion beam and two-beam systems, their interaction with materials, etching and deposition are all covered, as well as in situ materials characterization, sample preparation, three-dimensional reconstruction and applications in biomaterials and nanotechnology. With nanostructured materials becoming increasingly important in micromechanical, electronic and magnetic devices, this self-contained review of the range of ion beam methods, their advantages, and when best to implement them is a valuable resource for researchers in materials science, electrical engineering and nanotechnology.
The authors illustrate the basic physics and materials science of conjugated polymers and their interfaces, particularly, but not exclusively, as they are applied to polymer-based light emitting diodes. The approach is to describe the basic physical and associated chemical principles that apply to these materials, which in many instances are different from those that apply to their inorganic counterparts. The main aim of the authors is to highlight specific issues and properties of polymer surfaces and interfaces that are relevant in the context of the emerging field of polymer-based electronics in general, and polymer-based light emitting diodes in particular. Both theoretical and experimental methods used in the study of these systems are discussed. This book will be of interest to graduate students and research workers in departments of physics, chemistry, electrical engineering and materials sciences studying polymer surfaces and interfaces and their application in polymer-based electronics.
The 2006 edition of this authoritative guide on liquid crystalline polymer (LCP) science was produced in response to the wealth of new material generated in the field. It takes the reader through the theoretical underpinnings to real-world applications of LCP technology in a logical, well-integrated manner. A chapter on liquid biopolymers has been introduced, whilst the in-depth discussion on applications describes not only maturing fields of high strength structural LCPs, but also a detailed analysis of the developing area of functional materials. The in-depth coverage and detailed glossary establishes this as an indispensable text for graduate students and researchers in the polymer field, as well as being of interest to those working in chemistry, physics and materials science.
Now in paperback, this comprehensive book is the first text devoted to the problem of understanding the electrical properties of metals and alloys. Dr Rossiter, well-known for his work on the electrical resistivity of alloys, has written a book which blends results and theory, but does not rely on a strong grounding in quantum mechanics. After an introduction to the basic ideas, the concepts of atomic and magnetic correlations and their microstructural consequences are explained. Later chapters then deal with the effects of such correlations on electrical resistivity. Examples and applications of the concepts derived are given in discrete sections, allowing the uninterrupted development of theory for each specific problem, and enhancing the value of the book for a wide range of readers from theoretical and experimental solid state physicists to metallurgists and materials scientists. Anyone with an interest in the electrical conduction process or in the application of resistivity measurements to the study of alloy configuration will find this essential reading.
In the new edition of this widely praised textbook, all the chapters have been revised and the authors have brought the work completely up to date by the addition of new material on numerous topics. In recent years, solid state chemistry has emerged as a very important element of mainstream chemistry and materials science. Students, teachers and researchers need to understand the chemistry of solids because of the crucial role this plays in determining the properties of materials. An understanding of solid state chemistry is also essential in materials design, and many fascinating relationships between the structure and properties of solids have been discovered by chemists. This text requires only an understanding of basic physics, chemistry and crystallography, and is enhanced with the most recent examples, case studies and references. It will be of value to advanced students and researchers studying solid state chemistry and materials science as a text and reference work.
Reinforced rubber allows the production of passenger car tires with improved rolling resistance and wet grip. This book provides in-depth coverage of the physics behind elastomer reinforcement, with a particular focus on the modification of polymer properties using active fillers such as carbon black and silica. The authors build a firm theoretical base through a detailed discussion of the physics of polymer chains and matrices before moving on to describe reinforcing fillers and their applications in the improvement of the mechanical properties of high-performance rubber materials. Reinforcement is explored on all relevant length scales, from molecular to macroscopic, using a variety of methods ranging from statistical physics and computer simulations to experimental techniques. Presenting numerous technological applications of reinforcement in rubber such as tire tread compounds, this book is ideal for academic researchers and professionals working in polymer science.
Providing the first comprehensive overview of the method of crystal growth in gels, Professor Henisch reviews the field, covering the underlying physics as well as the empirical experience of growth techniques accumulated over the past century. In addition, the book discusses the phenomenon of periodic precipitation, which often governs the distribution of crystal in laboratory growth systems. For the first time, computer techniques are brought to bear on the subject, the diffusion equations being solved numerically, in association with the conditions governing precipitations and crystal growth.
The characterization of void-related microstructure in amorphous and microcrystalline Ge:H films is reported. Various methods are applied including effusion measurements of hydrogen and of implanted helium and neon, measurements of the infrared absorption of C-H bonds due to in-diffusion of contaminants and of the stretching modes of bonded hydrogen. Several microstructure effects like interconnected voids and isolated voids and a quite different material homogeneity are detected and are found to depend on the preparation conditions. Amorphous Ge:H can be prepared with a (largely) homogeneous structure while microcrystalline Ge:H tends to consist of compact grains surrounded by more or less open voids. Enhanced substrate temperatures (Ts ≈ 250°C) favour the growth of more compact material.