To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sn whisker formation was studied in a “bimetal ledge specimen” that consisted of a uniform layer of Sn that was covered by Cu on only half the sample. Whiskers are observed to grow in the Cu-free region of the sample, which is attributed to stress generated by the diffusion of Sn atoms along the network of columnar grain boundaries. The Sn diffusion is driven by the intermetallic growth, but the whisker density extends out much further than any measurable Cu concentration. Whiskers were also observed to grow in the Cu-coated region by punching through the overlayer, leaving a Cu-grain on the tip of the Sn whisker.
Based on a ternary Mg75Ni15Gd10 metallic glass former, a new Mg80Ni12Gd4Nd4 bulk metallic glass composite (BMGC) was developed by tailoring the compositions of Mg and rare earth (RE) elements. This BMGC displayed compressive ultimate strength over 900 MPa with a total strain to failure of 4.3% and specific strength of 3.12 × 105 Nm/kg. The improved mechanical properties were attributed to a “dual phases” structure consisting of Mg solid solution flakes and glassy matrix in the Mg80Ni12Gd4Nd4 BMGC. The homogeneously dispersed Mg phases reinforcement in the BMGC were characterized as a long period ordered structure (LPOS) with periodic arrays of six close-packed planes distorted from the ideal hexagonal lattice of 6H-type. The LPOS-Mg in the composite can act as a soft media to trap or interact with the unstable shear bands and contribute to plastic strain. The present study may provide a guideline for designing the Mg–TM–RE-based (TM: transition metals) BMGCs with “dual phases” structures.
Novel nanoionics devices, atomic switches, have been developed using a solid-electrochemical reaction to control the formation and annihilation of the metal filament between two electrodes. The switching operation can be achieved simply by the application of a bias voltage to precipitate metal atoms in a nanogap between the two electrodes or to dissolve them onto one of the electrodes. The small size of atomic switches enables rapid switching even though atomic motion is required. They also have several novel characteristics in that they are nonvolatile, consume less power, and have a simple structure and a low on-resistance. Logic gates and 1 kbit nonvolatile memory chips have been developed using atomic switches in order to demonstrate the possibilities for improving present-day electronic devices. Their characteristics also enable the fabrication of new types of electronic devices, such as high-performance programmable logic devices that may achieve a multitude of functions on a single chip.
Secondary ion mass spectrometry (SIMS) is a powerful analytical technique for determining elemental and isotopic distributions in solids. One of its main attractions to researchers in the field of solid-state ionics is its ability to distinguish between isotopes of the same chemical element as a function of position in a solid. With enriched stable isotopes as diffusion sources, this allows self-diffusion kinetics in solids to be studied. In this article, taking oxygen isotope diffusion in oxides as our main example, we present the standard experimental method, and, subsequently, we discuss several promising developments, in particular the opportunities offered by thin-film geometries, and the investigation of inhomogeneous systems, including possible fast diffusion along grain boundaries and making space-charge layers at interfaces “visible.” These examples demonstrate that SIMS is capable of probing mass transport processes over various length scales, ranging from some nanometers to hundreds of micrometers.
Instrumented indentation tests have been widely adopted for elastic modulus determination. Recently, a number of indentation-based methods for plastic properties characterization have been proposed, and rigorous verification is absolutely necessary for their wide application. In view of the advantages of spherical indentation compared with conical indentation in determining plastic properties, this study mainly concerns verification of spherical indentation methods. Five convenient and simple models were selected for this purpose, and numerical experiments for a wide range of materials are carried out to identify their accuracy and sensitivity characteristics. The verification results show that four of these five methods can give relatively accurate and stable results within a certain material domain, which is defined as their validity range and has been summarized for each method.
A major drawback in using bulk metallic glasses (BMGs) as structural materials is their extremely poor fatigue performance. One way to alleviate this problem is through the composite route, in which second phases are introduced into the glass to arrest crack growth. In this paper, the fatigue crack growth behavior of in situ reinforced BMGs with crystalline dendrites, which are tailored to impart significant ductility and toughness to the BMG, was investigated. Three composites, all with equal volume fraction of dendrite phases, were examined to assess the influence of chemical composition on the near-threshold fatigue crack growth characteristics. While the ductility is enhanced at the cost of yield strength vis-à-vis that of the fully amorphous BMG, the threshold stress intensity factor range for fatigue crack initiation in composites was found to be enhanced by more than 100%. Crack blunting and trapping by the dendritic phases and constraining of the shear bands within the interdendritic regions are the micromechanisms responsible for this enhanced fatigue crack growth resistance.
Metalorganic chemical vapor deposition was used to grow N-rich side GaNSb alloys under different growth conditions, and, for the first time, a considerable amount of Sb was incorporated into the GaNSb. The amount of Sb increased as the growth temperature decreased, but the maximal Sb content seemed to be limited by the solid solubility of Sb in GaN. Absorption spectroscopy of the GaNSb revealed a strong absorption band below the band gap of GaN. The below-band gap absorption extended to 0.8 eV, which makes GaNSb a promising material to serve as an infrared absorption layer on GaN.
The phenomenon of ion migration in solids forms the basis for a wide variety of electrochemical applications, ranging from power generators and chemical sensors to ionic switches. Solid-state ionics (SSI) is the field of research concerning ionic motions in solids and the materials properties associated with them. Owing to the ever-growing technological importance of electrochemical devices, together with the discoveries of various solids displaying superior ionic conductivity at relatively low temperatures, research activities in this field have grown rapidly since the 1960s, culminating in “nanoionics”: the area of SSI concerned with nanometer-scale systems. This theme issue introduces key research issues that we believe are, and will remain, the main research topics in nanoionics and SSI during the 21st century. These include the application of cutting-edge experimental techniques, such as secondary ion mass spectroscopy and nuclear magnetic resonance, to investigate ionic diffusion in both bulk solids and at interfaces, as well as the use of atomic-scale modeling as a virtual probe of ionic conduction mechanisms and defect interactions. We highlight the effects of protonic conduction at the nanometer scale and how better control of interfaces can be employed to make secondary lithium batteries based on nanoionics principles. Finally, in addition to power generation and storage, the emergence of atomic switches based on cation diffusion shows great promise in developing next-generation transistors using SSI.
Three-dimensional spherical assemblies of Ni-doped ZnO nanocrystals have been prepared by the solution phase synthesis process. It has been observed that transition metal ions (Zn, Ni) are uniformly distributed in the sample and exist in the +2 oxidation state. Detailed investigation of structural defects formed during the formation of spherical assemblies by oriented attachment of nanocrystals was carried out by high-resolution transmission electron microscope (HRTEM), Raman and photoluminescence (PL) spectroscopy. HRTEM analysis revealed the existence of various crystal defects, such as stacking faults, dislocations, etc. The incorporation of Ni2+ into ZnO structure strongly influences the vibrational and optical properties of the sample due to the increment of defect densities. Compared to the optical phonons of ZnO, additional mode observed at 538 cm−1 in Raman spectra of Ni-doped ZnO could be associated with the incorporation of Ni2+ in Zn2+ site. The increase in PL intensity of green emission with Ni2+ doping indicates the formation of a higher concentration of oxygen vacancy in doped nanostructures.
X-ray diffraction (XRD) and transmission electron microscope (TEM) investigations have been carried out to decode the influence of stacking-fault energy (SFE) on the accommodation of large shear deformation in Cu-Al alloys subjected to one-pass equal-channel angular pressing. XRD results exhibit that the microstrain and density of dislocations initially increased with the reduction in the SFE, whereas they sharply decreased with a further decrease in SFE. By systematic TEM observations, we noticed that the accommodation mechanism of intense shear strain was gradually transformed from dislocation slip to deformation twin when SFE was lowered. Meanwhile, twin intersections and internal twins were also observed in the Cu-Al alloy with extremely low SFE. Due to the large external plastic deformation, microscale shear bands, as an inherent deformation mechanism, are increasingly significant to help carry the high local plasticity because low SFE facilitates the formation of shear bands.
The grain refinement effect of a pulsed magnetic field on superalloy IN718 was investigated. The experimental results show that fine equiaxed grains are acquired under the pulsed magnetic field. The refinement effect of the pulsed magnetic field is affected by the mold temperature. And the mixed grains are found in the solidified microstructures under the pulsed magnetic field. The origin of nuclei under the pulsed magnetic field is from the mold wall because of the rough mold surface, the undercooling, and the melt vibration, which all contribute to the refinement of solidified grains.
Uniform monodisperse nanospheres of tetra-kis(4-methoxylphenyl) porphynatemanganese (III) chloride [MnIII(TMOPP)Cl] of about 200 nm have been synthesized through a facile surfactant-assisted reprecipitation method at room temperature. Scanning electron microscopy, transmission electron microscope, infrared spectrum, ultraviolet–visible spectrum, and elemental analysis were adopted to characterize the as-prepared metalloporphyrin nanostructures. The influence factors in the reaction to the sizes and morphologies of porphyrin nanoparticles were discussed. The sizes of porphyrin nanoparticles were affected mainly by the porphyrin concentration and only monodisperse nanoshperes with high uniformity in sizes and shapes can self-assemble to form order two-dimensional superstructures.
Electronic devices capable of performing in extreme mechanical conditions such as stretching, bending, or twisting will improve biomedical and wearable systems. The required capabilities cannot be achieved with conventional building geometries, because of structural rigidity and lack of mechanical stretchability. In this article, a zigzag-patterned structure representing a stretchable interconnect is presented as a promising type of building block. In situ experimental observations on the deformed interconnect are correlated with numerical analysis, providing an understanding of the deformation and failure mechanisms. The experimental results demonstrate that the zigzag-patterned interconnect enables stretchability up to 60% without rupture. This stretchability is accommodated by in-plane rotation of arms and out-of-plane deformation of crests. Numerical analysis shows that the dominating failure cause is interfacial in-plane shear stress. The plastic strain concentration at the arms close to the crests, obtained by numerical simulation, agrees well with the failure location observed in the experiment.
During the past decade, the electrochemical properties (energy density, power capability, and cycling stability) of practical lithium (Li) batteries have been enormously improved. Surprisingly, although the knowledge exists of how to prepare excellent batteries, a detailed understanding of how they actually work is still lacking. In particular, the impact of interfaces in electrode composites is poorly understood. Here, we collect the most advanced mechanistic studies performed in our laboratory or published in recent literature and try to embed this knowledge into the well-established concepts used in solid-state ionics for many decades. In particular, we focus on the so-called perpendicular and parallel interfacial effects. We show that much of the old wisdom can be applied to batteries, although there are several important differences. We discuss, in some detail, the effects of charge incorporation, electronic interphase contacting, electrode porosity, and heterogeneous doping in selected advanced electrode materials and emphasize the future perspectives.