To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Damage response of brittle curved structures subject to cyclic Hertzian indentation was investigated. Specimens were fabricated by bisecting cylindrical quartz glass hollow tubes. The resulting hemicylindrical glass shells were bonded internally and at the edges to polymeric supporting structures and loaded axially in water on the outer circumference with a spherical tungsten carbide indenter. Critical loads and number of cycles to initiate and propagate near-contact cone cracks and far-field flexure radial cracks to failure were recorded. Flat quartz glass plates on polymer substrates were tested as a control group. Our findings showed that cone cracks form at lower loads, and can propagate through the quartz layer to the quartz/polymer interface at lower number of cycles, in the curved specimens relative to their flat counterparts. Flexural radial cracks require a higher load to initiate in the curved specimens relative to flat structures. These radial cracks can propagate rapidly to the margins, the flat edges of the bisecting plane, under cyclic loading at relatively low loads, owing to mechanical fatigue and a greater spatial range of tensile stresses in curved structures.
A method is described for the creation of surfaces with cyclically reversible topographical form. Using spherical and cylindrical indenters applied to NiTi shape-memory alloys, an indentation-planarization technique is shown to result in a two-way shape memory effect that can drive flat-to-wavy surface transitions on changing temperature. First, it is shown that deep spherical indents, made in martensitic NiTi, exhibit pronounced two-way cyclic depth changes. After planarization, these two-way cyclic depth changes are converted to reversible surface protrusions, or “exdents.” Both indent depth changes and cyclic exdent amplitudes can be related to the existence of a subsurface deformation zone in which indentation has resulted in plastic strains beyond that which can be accomplished by martensite detwinning reactions. Cylindrical indentation leads to two-way displacements that are about twice as large as that for the spherical case. This is shown to be due to the larger deformation zone under cylindrical indents, as measured by incremental grinding experiments.
In recent studies, nanoindentation experiments combined with the Oliver and Pharr method (OP method) are frequently used to measure the mechanical properties of “one-dimensional” structural materials (micro/nanowires and nanobelts) regardless of the corresponding assumptions of the OP method. This article reports the numerical simulation studies of the nanoindentations of wire structural materials on elastic-plastic substrates using dimensional analysis and the finite element method. We find that the measured hardness and Young’s modulus of wire structural materials are significantly influenced by their geometries and indenters as well as the mechanical properties of substrates and wires.
The hardness of a material is generally affected by the indentation size effect. The strain gradient plasticity (SGP) theory is largely used to study this load dependence because it links the hardness to the intrinsic properties of the material. However, the characteristic scale-length is linked to the macrohardness, impeding any sound discussion. To find a relevant parameter, we suggest introducing a hardness length-scale factor that only depends on the shear modulus and the Burgers vector of the material and is easily calculable from the relation of the SGP theory. The variation of the hardness length-scale factor is thereafter used to discuss the hardness behavior of a magnetite crystal, the objective being to study the effect of the cumulative plasticity resulting from cyclic indentation. As a main result, the hardness length-scale factor is found to be constant by applying repeated cycles at a constant peak load whereas the macrohardness and the characteristic scale-length are both cycle dependent. When using incremental loads, the hardness length-scale factor monotonically decreases between two limits corresponding to those obtained at high and low loading rates, while the dwell-load duration increases. The physical meaning of such behavior is based on the modification of the dislocation network during the indentation process depending on the deformation rate.
A unique atomic force microscope-based local thermal-mechanical analysis (LTA) technique was used to study the influence of room temperature aging on viscoelastic properties of ethylene-methacrylic (E/MAA) acid ionomers. This approach permits easy access to structural relaxation effects on viscoelasticity at a short aging time, for instance, before the occurrence of secondary crystallization differential scanning calorimetry (DSC) melting peak. A Burger model along with finite element method yields quantitative analysis of viscoelastic properties versus the aging time. Creep curves were obtained with LTA after various times of aging at room temperature upon cooling from the melt. Measurements were carried out at both 30 and 70 °C. The results reveal the effects of structural relaxation upon aging in the ion-rich amorphous region, the influence of secondary crystallites on the viscoelastic properties, and shed light on the processes associated with aging in E/MAA ionomers.
Instrumented indentation (referred to as nanoindentation at low loads and low depths) has now become established for the single point characterization of hardness and elastic modulus of both bulk and coated materials. This makes it a good technique for measuring mechanical properties of homogeneous materials. However, many composite materials are composed of material phases that cannot be examined in bulk form ex situ (e.g., carbides in a ferrous matrix, calcium silicate hydrates in cements, etc.). The requirement for in situ analysis and characterization of chemically complex phases obviates conventional mechanical testing of large specimens representative of these material components. This paper will focus on new developments in the way that nanoindentation can be used as a two-dimensional mapping tool for examining the properties of constituent phases independently of each other. This approach relies on large arrays of nanoindentations (known as grid indentation) and statistical analysis of the resulting data.
A novel optimization approach, capable of extracting the mechanical properties of an elasto-plastic material from indentation data, is proposed. Theoretical verification is performed on two simulated configurations. The first is based on the analysis of the load–displacement data and the topography of the residual imprint of a single conical indenter. The second is based on the load–displacement data obtained from two conical indenters with different semi-angles. In both cases, a semi-analytical approach [e.g., Dao et al., Acta Mater.49, 3899 (2001) and Bucaille et al., Acta Mater.51, 1663 (2003)] is used to estimate Young’s modulus, yield stress, and strain hardening coefficient from the load–displacement data. An inverse finite element model, based on a commercial solver and a newly developed optimization algorithm based on a robust stochastic methodology, uses these approximate values as starting values to identify parameters with high accuracy. Both configurations use multiple data sets to extract the elastic-plastic material properties; this allows the mechanical properties of materials to be determined in a robust way.
In this work the hardening effect of Ta and Mo in Ni-base alloys was investigated using a combinatorial approach with diffusion couples. Furthermore, the Ni-Fe system was used as a reference system taking advantage of the full miscibility at high temperatures. Ta was chosen, as aside from having a technical relevance in the Ni-base superalloys, it also has a high miscibility in Ni. The main focus of this paper will be solid solution hardening. It will be shown that even though the determination of hardness is subject to varying indentation size effects (ISE) [Durst et al., Acta Mater.55(20), 6825 (2007)], only a few modifications are necessary to describe solid solution strengthening measured by nanoindentations using the Labusch theory [Labusch, Acta Metall.20(7), 917 (1972)]. Moreover, after a careful evaluation of the results, the data can be used to investigate solid solution hardening effects quickly and efficiently with small amounts of material.
Nanowires are among the most exciting one-dimensional nanomaterials because of their unique properties, which result primarily from their chemical composition and large surface area to volume ratio. These properties make them ideal building blocks for the development of next generation electronics, opto-electronics, and sensor systems. In this article, we focus on the unique mechanical properties of nanowires, which emerge from surface atoms having different electron densities and fewer bonding neighbors than atoms lying within the nanowire bulk. In this respect, atomistic simulations have revealed a plethora of novel surface-driven mechanical behavior and properties, including both increases and decreases in elastic stiffness, phase transformations, shape memory, and pseudoelastic effects. This article reviews such atomistic simulations, as well as experimental data of these phenomena, while assessing future challenges and directions.
Nanostructures can be in the form of nanoparticles or nanograins, nanowires or nanotubes, and nanoplates or multilayers. These nanostructures may be used individually or embedded in a bulk material. In both cases, they share two common features. First, the small dimensions minimize or even eliminate the presence of defects. Second, nanostructures entail large surface or interface areas. The absence of defects makes nanostructure materials stronger than their bulk counterparts, leading to the eventual realization of ideal strength. The presence of surfaces and interfaces may either reduce or increase the strength. Atomistic simulations can provide insight into the deformation mechanism at the atomic and electronic level, something that is very difficult to obtain from experiments. This article describes generic features of nanostructures and summarizes the five areas presented in the articles in this issue.
The interfacial fracture toughness and the adhesion strength of two dissimilar materials are governed by the diffusion interfacial thickness and its mechanical characteristics. A new testing methodology is implemented here to estimate the actual interfacial thickness from a series of nanoindentations across the interface, under the same applied load, with tip radius and indentation depth many times larger than the interface thickness. The bimaterial system used is a semicrystalline polymer interface of isotactic polypropylene and linear low-density polyethylene. The laminate is prepared under a range of diffusion temperature to yield diffusion interfaces of 0 to 50 nm. A numerical relationship is developed using two-dimensional (2D) finite element simulation to correlate the true interfacial thickness, measured by transmission electron microscopy, with the experimentally estimated apparent interfacial thickness, derived from the transition domain of a series of indents across the interface. A range of material-pairs property combinations are examined for Young’s modulus ratio E1/E2 = 1 to 3, yield strength ratio σY1/σY2 = 1 to 2.5, and interfacial thickness of 0 to 100 nm. The proposed methodology and the numerically calibrated relationship are in good agreement with the true interfacial thickness.
The mechanical response to indentation (including nano- and microindentation) has been investigated in Cu/Au and Cu/Cr multilayers with respective layer thickness ratios of 1:1 and 2:1, and individual layer thickness ranging from nanometer to submicrometer scale. It was found that the Cu/Cr multilayer has higher strength than the Cu/Au multilayer, although both multilayers have close Hall–Petch slope. Examination of indentation-induced deformation behavior shows that the Cu/Cr multilayer exhibits higher resistance to plastic deformation instability than the Cu/Au multilayer. Theoretical analysis indicates that the significant difference in mechanical response originates from the constituent layer configuration and interface structures, which impose distinguishing confining effect on dislocation activity.
Deformation field parameters in plane-strain indentation of a perfectly plastic solid with a punch have been mapped using particle image velocimetry, a correlation-based image analysis technique. Measurements of velocity and strain rate over a large area have shown that the deformation resembles that of the slip line field of Prandtl. A zone of dead metal is found to exist underneath the indenter adjoining which is a transition region of material flow similar to the centered-fan region in the slip line field. Shear bands demarcate the boundaries of these deformation regions. The observations suggest that a representative strain rate may be assigned to the indentation. By integrating the strain rate field along particle trajectories, the strains in the indentation region have been estimated. The strain values are seen to be large, 0.5 to 4, over a region extending to about twice the indenter half-width. A pocket of large strain, ∼4, is found to exist close to the edge of the indenter–specimen contact. Prandtl’s slip line field is modified based on the observations and used to estimate the strain field. The measurements of the deformation parameters are found to compare mostly favorably with the predictions of the slip line field and prior observations of indentation. The implications of these findings for analysis and interpretation of indentation hardness are briefly discussed.
A finite-element (FE) microstructurally based dislocation density multiple-slip crystalline formulation that is coupled to molecular dynamic (MD) simulations has been used to predict how nanoindentation affects behavior in crystalline gold polycrystals at scales that span the molecular to the continuum level. Displacement profiles from MD simulations of nanoindentation were used to obtain scaling relations, which are based on indented depths, grain sizes, and grain aggregate distributions. These scaling relations are then used in a microstructurally based FE formulation that accounts for dislocation density evolution, crystalline structures, and grain sizes. This hierarchical methodology can be used to ascertain inelastic effects, such as shear-slip distribution, pressure accumulation, and dislocation density and slip-rate evolution at physical scales that are commensurate with ductile behavior at the microstructural scale.
Substrate influence is a common problem when using instrumented indentation (also known as nanoindentation) to evaluate the mechanical properties of thin films. In this work, finite element analysis was used to develop an ad hoc model that predicts the substrate influence when testing thin dielectric films on silicon. The model was evaluated experimentally using three sets of films that were nominally the same except for thickness. Using the model significantly reduced the measurement error for the thinnest films (<250 nm) by accurately accounting for the influence of the substrate. The model also significantly reduced the measurement uncertainty, because properties were evaluated using larger indents that would normally be unduly affected by the substrate. The process for developing this model may be useful in developing other ad hoc models for analyzing film-substrate systems.