To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We have investigated structural changes of amorphous borosilicon carbonitride materials with atomic ratios of B/Si/C of 2/3/6 and 4/3/6 calcined at several temperatures. The boron K-edge x-ray absorption spectra showed that the structures of both hexagonal boron nitride ([BN3] unit) with nitrogen-void defects ([BN2] and [BN1] units) and boron oxide existed in the samples, and the relative peak intensity due to the [BN3] unit became stronger by increasing the calcined temperature. It is thought that the well-developed B–N chain and the borosilicate glass coating lead to the high resistance to oxidation at high temperature. X-ray diffraction and infrared measurements followed the x-ray absorption near-edge spectroscopy findings.
The mechanical behavior [i.e., stiffness, strength, and toughness (KIC)] of SiC Al–Si–Mg metal–ceramic composites (50:50 by volume) was studied at temperatures ranging from 25 to 500 °C. The SiC phase was derived from wood precursors, which resulted in an interconnected anisotropic ceramic that constrained the pressure melt-infiltrated aluminum alloy. The composites were made using SiC derived from two woods (sapele and beech) and were studied in three orthogonal orientations. The mechanical properties and corresponding deformation micromechanisms were different in the longitudinal (LO) and transverse directions, but the influence of the precursor wood was small. The LO behavior was controlled by the rigid SiC preform and the load transfer from the metal to the ceramic. Moduli in this orientation were lower than the Halpin–Tsai predictions due to the nonlinear and nonparallel nature of the Al-filled pores. The LO KIC agreed with the Ashby model for the KIC contribution of ductile inclusions in a brittle ceramic.
In this article, we describe oxidation of molten Sn–0.07 wt% P alloy exposed in air at 280 °C. Although oxidation can be effectively reduced by the addition of trace phosphorus, the oxide film has a poor protection for the molten alloy with a high P concentration. The oxide film was analyzed by x-ray photoelectron spectroscopy. Comparing the results with the low P sample, there was a high phosphorous content in the film and a new Sn–P compound on the surface of the high P sample. It is assumed that the poor protection against oxidation of the film could be due to volatility of phosphorus in the Sn–P alloy at the temperature.
A polymer, which by pyrolysis transforms into Al–C–N–(O) ceramics, was synthesized from trimethylamine alane and cyan amide, and its applicability as a sintering additive for Si3N4 was investigated. Si3N4 powders were mixed with the precursor by treatment with organic slurries of the precursor to induce the homogeneous distribution of the additive. The green-bodies were pretreated in air or NH3 at 800 °C to control the chemical composition of the additive, through which the densification of Si3N4 could be improved. Dense samples with very fine grains (<2 μm) were obtained after sintering at 1600 °C in 0.1 MPa N2. Besides silicon nitride, submicrometer silicon carbide particles were observed in the samples, indicating that this procedure (i.e., the use of this novel sintering additive) also allows for the fabrication of SiC–Si3N4 composites.
Bulk metallic glass (BMG) formations in Co- and Fe-based alloy systems are investigated by using our cluster line approach in combination with minor alloying principle. Basic ternary alloy compositions in Co–B–Si, Fe–B–Y, and Fe–B–Si systems are first determined by cluster lines defined by linking special binary clusters to third elements. Then the basic ternary alloys are further minor alloyed with 3 to 5 at.% Nb to improve glass-forming abilities (GFAs) and ϕ3 mm BMGs are formed in (Co8B3–Si)–Nb and (Fe8B3–Y)–Nb but not in (Fe8B3–Si)–Nb, TM8B3 (TM = Fe, Co) being the most compact binary cluster. The BMGs are expressed approximately with a unified simple composition formula: (TM8B3)1M1, M = (Si, Nb) or (Y, Nb). Finally, mutual Fe and Co substitutions further improve the GFAs as well as the soft magnetic properties, e.g., Is reaching 0.98 T and Hc < 6 A/m for the Co–Fe–B–Si–Nb BMGs. Using the (cluster)1(glue atom)1 model, a new ternary BMG Fe8B3Nb1 is obtained.
In this article, we present the vacuum ultraviolet-visible spectroscopic properties of NaRFPO4:Tb3+ (R = Gd and Y). Because the samples show intensive absorption near 172 nm and bright emission, the composition of the phosphors has been further optimized and an ideal phosphor NaGd0.3Y0.5Tb0.2FPO4 is obtained. This phosphor exhibits favorable characteristics such as a lower preparation temperature, an intensive emission under 172-nm excitation, a shorter decay time (τ1/10 = 8.7 ms) in comparison with the commercial green plasma display panel (PDP) phosphor Zn2SiO4:Mn2+ (τ1/10 = 10.8 ms), a good thermal stability for luminescence performance, and a uniform particle size around 2.3 μm. Hence, the phosphor NaGd0.3Y0.5Tb0.2FPO4 can be considered a promising green phosphor for use in PDPs.
With the emergence and evolution of serial sectioning techniques that allow for three-dimensional data collection and the continuing increase in computational power, it is now possible to analyze and compute the evolution of three-dimensional nano- and microstructures. Structures can be accurately characterized, and it is possible to correlate processing paths with materials properties with great precision. Examples of the analysis and computations of the evolution of three-dimensional microstructures are discussed. The focus is on experiments that use serial sectioning methods to determine three-dimensional structure and on phase-field simulations of microstructural evolution that employ experimental three-dimensional data as initial conditions.
Following Part I [X. Yao, et al., J. Mater. Res.23(5), 1282 (2008)] and Part II [X. Yao, et al., J. Mater. Res.23(5), 1292 (2008)] the cellular automation–finite control volume method (CAFVM) model was used to study the grain formation and microstructure morphology resulting from solidification of a commercial Al–Si–Mg alloy with Al–Ti–B grain refiner additions. The model incorporates the effect of the introduced solute Ti and the alloying elements of Si and Mg on the growth restriction factor, constitutional undercooling, and nucleation parameters. With respect to grain refinement, it is found that the alloying elements, Si and Mg, play a role that is similar to Ti qualitatively while different quantitatively. Accordingly, a concept of “equivalent solute” determined by phase diagram parameters such as the solute partitioning coefficient and the liquidus slope is proposed to clarify the effect of each solute in the alloy on grain formation during solidification. Based on the calculations and on comparison to the experimental data, a possible mechanism of grain refinement in this alloy system is proposed.
A reactive direct current magnetron sputtering system was used to prepare NbAlN coatings at different nitrogen flow rates and substrate bias voltages. Various properties of NbAlN coatings were studied using x-ray diffraction, scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, nanoindentation, the four-probe method, a solar spectrum reflectometer and emissometer, spectroscopic ellipsometry, micro-Raman spectroscopy, and potentiodynamic polarization techniques. Single-phase NbAlN with B1 NaCl structure was obtained for the coatings prepared at a nitrogen flow rate in the range of 1.5–3 sccm, a substrate bias voltage of −50 to −210 V, and a substrate temperature of 300 °C. Nanoindentation data showed that the optimized NbAlN coating exhibited a maximum hardness of 2856 kg/mm2. An approximately 100-nm-thick NbAlN–NbAlON tandem on copper substrate exhibited a high absorptance (0.93) and a low emittance (0.06), suitable for solar-selective applications. The spectroscopic ellipsometry and resistivity data established the metallic nature of NbAlN and the semitransparent behavior of NbAlON coatings. The corrosion resistance of NbAlN coatings was superior to that of the mild steel substrate. The addition of aluminum in NbN coatings increased the onset of oxidation in air from 350 to 700 °C. Vacuum-annealed NbAlN coatings were structurally stable up to 700 °C and retained their high hardness up to a temperature of 650 °C.
The tailoring of cermet composition to improve tribological properties requires careful choice of the type of secondary carbide. To investigate this aspect, a number of sliding tests were carried out on baseline TiCN–20Ni cermet and TiCN–20wt%Ni–10 wt% XC cermets (X = W/Nb/Ta/Hf) at varying loads of 5N, 20N, and 50N against bearing steel. With these experiments, we attempted to answer some of the pertinent issues: (i) how does the type of secondary carbide (WC/NbC/TaC/HfC) influence friction and wear behavior, and is such influence dependent on load?; and (ii) how does the secondary carbide addition affect the stability and composition of the tribochemical layer under the selected sliding conditions? Our experimental results reveal that the added secondary carbides influence chemical interactions between different oxides and such interactions dominate the friction and wear behavior. A higher coefficient of friction (COF) range, varying from 0.75 to 0.64 was recorded at 5N; whereas the reduced COF of 0.46–0.52 was observed at 20N or 50N. The volumetric wear rate decreased with load and varied on the order of 10−6 to 10−7 mm3/Nm for the cermets investigated. The cermet containing HfC exhibited high friction and poor wear resistance. At low load (5N), the abrasion and adhesion of hard debris containing various oxides dominated the wear, and resulted in high friction and wear loss. In contrast, the more pronounced increase in friction-induced contact temperature (below 500 °C) and compaction of hard debris resulted in the formation of a distinct tribochemical layer at higher loads (20N and 50N). The formation of a dense tribolayer containing oxides of iron and/or titanium is responsible for the reduced friction and wear, irrespective of secondary carbides.
Biological molecules such as oligonucleotides, proteins, or peptides can be used for the synthesis, recognition, and assembly of materials with nanoscale dimensions. Of particular interest are the fields of near-field optics and plasmonics. Many potential optical applications depend on the ability to control the relative positioning of organic dyes, plasmon-resonant metal nanoparticles, and semiconductor quantum dots with nanoscale precision. In this article, we describe some recent achievements in biological assembly and nanophotonics, and discuss potential uses of biological materials for assembling optically functional nanostructures. We emphasize the use of biological materials to build well-defined nanostructures for near-field plasmon-enhanced fluorescence.
Long-term effects on Nylon 6,12 crystalline fibers irradiated six years ago have been determined, including chemical structure and morphology, and their relationship with storage time. Results from x-ray diffraction, small-angle x-ray scattering, scanning electron microscopy, and atomic force microscopy are reported for those fibers and for freshly irradiated ones. Some results for non-irradiated samples are included for comparison. Changes in the shape and size of the crystals (crystallinity degree) are found; the crystallite size increases with storage time. Both surface and bulk changes are seen in the morphology. Surface damage increases with storage time. Changes observed can be attributed to irradiation causing chain scission, which, in turn, causes crystal reorganization. The present results reinforce interpretation of earlier results obtained for concretes reinforced with irradiated Nylon fibers.
Ni–P deposits of amorphous, nanocrystalline, and mixed structures were prepared by electroless deposition. The three deposits were hypoeutectic Ni–P alloys with different P concentrations. The overall transformation sequences of the deposits during post-deposition annealing were investigated using differential scanning calorimetry, x-ray diffraction, and transmission electron microscopy. It was found that there existed three heat-release peaks in a mixed-structure deposit during annealing. The first peak came from the precipitation of Ni nanocrystallites from an amorphous matrix, the second peak resulted from the decomposition of the retained amorphous matrix into Ni + Ni3P having a composition close to the eutectic point, and the third peak, newly found in hypoeutectic Ni–P alloys, was assumed to be caused by both grain growth and the precipitation of Ni3P from as-deposited supersaturated Ni(P) nanocrystals interspersed within the amorphous matrix. By comparing the transformation sequences of the amorphous deposit with that of the nanocrystalline deposits, it was concluded that the transformation sequence of the mixed-structure deposit was a superimposition of those of both the amorphous and nanocrystalline deposits.
While nanowires and nanotubes have been shown to be electrically sensitive to various chemicals, not enough is known about the underlying mechanisms to control or tailor this sensitivity. By limiting the chemically sensitive region of a nanostructure to a single binding site, single molecule precision can be obtained to study the chemoresistive response. We have developed techniques using single-walled- carbon-nanotube (SWCNT) circuits that enable single-site experimentation and illuminate the dynamics of chemical interactions. Discrete changes in the circuit conductance reveal chemical processes happening in real-time and allow SWCNT sidewalls to be deterministically broken, reformed, and conjugated to target species.
Using periodic density-functional theory (DFT), we investigated the structure and cohesive properties of the α-alumina Σ11 tilt grain boundary, with and without segregated elements, as a model for the thermally grown oxide in jet engine thermal barrier coatings. We identified a new low-energy structure different from what was proposed previously based on electron microscopy and classical potential simulations. We explored the structure and energy landscape at the grain boundary for segregated Al, O, and early transition metals (TMs) Y and Hf. We predict that the TMs preferentially adsorb at the same sites as Al, while some adsites favored by O remain unblocked by TMs. All segregated atoms have a limited effect on grain boundary adhesion, suggesting that adhesion energies alone cannot be used for predictions of creep inhibition. These findings provide some new insights into how TM dopants affect alumina growth and creep kinetics.
Self-assembled materials composed of β-sheet forming peptides hold promise as therapeutics and novel biomaterials. This article focuses on the design and engineering of amphiphilic peptide sequences, especially β-hairpins. Peptides can be designed to intramolecularly fold and then self-assemble on cue, affording hydrogels rich in β-sheet structure. Hydrogels having distinct material properties can be designed at the molecular level by modulating either the peptide's sequence or the environmental stimulus used to trigger folding and assembly, leading to gelation.
Three common Al–Au intermetallics, Al2Au, AlAu2, and AlAu4, were oxidized in the air and characterized using x-ray photoelectron spectroscopy in terms of the elemental chemical state. It was found that there is an increasing trend of oxidation in these intermetallics as the Au content increases. AlAu4 shows the greatest tendency to oxidize with two extra peaks appearing on the Au 4f spectra after long exposure time in air. The surface of AlAu2, although fully oxidized, reveals only one Au 4f peak shift as depth increases. Al2Au was the least oxidizing compound, and the oxide is thin. The binding energies of Al 2p and Au 4f peaks were measured and reported. The Au atoms trapped in the oxide layers exhibit higher binding energy emissions compared to those of elemental Au.