To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The difference of natural talents in different men is, in reality, much less than we are aware of; and the very different genius which appears to distinguish men of different professions … is not upon many occasions so much the cause, as the effect of the division of labour. The difference between the most dissimilar characters, between a philosopher and a common street porter, for example, seems to arise not so much from nature, as from habit, custom, and education. … By nature a philosopher is not in genius and disposition half so different from a street porter, as a mastiff is from a greyhound
David Sabean remarked a few years ago that Anglo-American sociology faced a crisis, as it had based itself fundamentally on the structures of “social class” – a concept that has now given way nearly completely to the concept of “identity.” So many ask now about the historical identity or persona of the scientist but do not seem to want the prosopographer’s answer, for that answer has tended to be given in terms of social class and its related sociological notions, such as the division of labor in the scientific community: a Smithian political economy of knowledge. It is interesting, moreover, that, although a prosopography of the subjects or “heroes” of knowledge may be at once a rather ancient and a very modern pursuit, its true age, from which it traces its provenance, is the eighteenth century. Our prosopography is kith and kin with the liberal, materialistic, and positivistic social and political philosophy of the eighteenth century.
To date there has been little detailed research into the history of institutionalized science teaching in the eighteenth century, apart from work done on the British Isles, France, and the Netherlands. The paucity of data reflects the fact that until recently historians of eighteenth-century natural philosophy have taken little interest in the history of science in the classroom, assuming the subject of small importance. This chapter aims to demonstrate that such a judgment is misguided even if the conclusions of such a study must necessarily be provisional. The history of science teaching in the Age of Reason throws light on the speed and manner with which new theories and discoveries became part of the European cultural inheritance. More important, it also advances our understanding of the way in which distinctive natural sciences came to be defined and stabilized and distinctive national scientific traditions began to emerge at the end of the period.
AROUND 1700
Traditionally, public teaching in the natural sciences was the preserve of the universities, where the resposibility for teaching the gamut of human knowledge was divided among the faculties of arts, theology, law (sometimes divided into separate canon and civil law faculties), and medicine. By 1700, after three centuries of expansion, the number of Europe’s universities had grown from 40 to some 150, and they were to be found in all parts of the continent except Russia. A further fifteen or so universities or university colleges had also been founded in the New World, including three in the then English North American colonies: Harvard, Yale, and the College of William and Mary at Williamsburg.
In August 1783, three eminent men of science made the thirty-mile journey from London to Guildford to watch one of their colleagues, James Price, fulfill the alchemists’ ancient dream of extracting gold from mercury. This distinguished chemist, a wealthy Oxford graduate who had been elected to the Royal Society when only twenty-nine years old, had already publicly demonstrated his alchemical skills and had published a book advertising his successful transmutations. Concerned to preserve the Royal Society’s reputation, its President, Joseph Banks, instructed Price to repeat his experiments before an expert audience. But instead of the process of lucrative creation they had been promised, Banks’s delegates witnessed only one of self-destruction, as Price swallowed a glass of laurel water and died in front of their eyes. Price was pushed into making this ultimate sacrifice in the cause of Enlightenment rationality. Some of his critical peers were preoccupied less with the validity of his claims than with the threat his activities posed to the status of established institutions. One of Banks’s confidants, Charles Blagden, articulated this interest in guarding the proprieties of scientific behavior rather than monitoring its results:
Was ever any country more completely disgraced than ours has been by the conduct of the University. For, granting that Price has made the discovery held out in his book, should it not have been said to him that the man who having hit upon an improvement in science, keeps it from the world deserves rather to be excluded from the Society of learned men than to be adorned with extraordinary academic honours?
In the history of South Asia, the eighteenth century is unique in the sense that it saw the decline of precolonial systems as well as the inauguration of systematic colonization. This single century encompasses both the precolonial and the colonial phases. Although every historical period is a period of transition, the theme of transition is more applicable to the eighteenth century than to any other period in Indian history. In this century the mighty Mughals broke up, and this collapse has been explained in terms of religious differences, economic crises, and cultural failures. The crucial nature of the last factor has of late been emphasized: “It was this failure that tilted the economic balance in favour of Europe”; it was this failure again that sapped “the capacity to grapple with agrarian crises”; “even military weaknesses flowed from the intellectual stagnation that seem to have gripped the Eastern world.” Is “stagnation” the right description? Was it really an “age of decline”? What was the state of techno-scientific knowledge in this age of political turmoil? It is true that the Eastern knowledge corpus and its implements were no match for what was then happening in the West. But why? Was it because of some “structural fault” in the Indo-Islamic society or some built-in defect in its ideological framework? What was the size and composition of the intelligentsia? What were their economic interests and cultural predilections? Many questions emerge for which only partial explanations can be attempted.
Mention the term “medical science” to someone, and it is likely to evoke an image of white-coated scientists working at a laboratory bench. In the mind of a more historically informed listener, the term might produce a more specific image – of Louis Pasteur gazing at a test tube, of Xavier Bichat bending over one of his corpses in the Hotel-Dieu, or even of William Harvey ligating a vein – but the general meaning would remain largely the same, because for us the association between “medical science” and “experiment” is a powerful one. Yet for all its pervasiveness, this association is misleading when we consider the medical sciences in the eighteenth century. An image far more appropriate than the laboratory would be the simple podium or lectern, for the medical sciences were understood by eighteenth-century physicians primarily as a body of theoretical doctrines that formed one part of the university medical curriculum. The medical sciences, especially the subjects of physiology and pathology, furnished the bridge between medical knowledge proper and the domain of natural philosophy. And natural philosophy attempted in turn to provide a comprehensive theoretical knowledge of the elemental makeup of the world and the motions of matter. Therefore, insofar as physiology and pathology explained the composition and actions of the living body in its healthy and diseased states and rendered those explanations in terms consistent with natural philosophy, they legitimated medicine’s claim to the status of scientific knowledge.
The relations between the images of the man of science and the social and cultural realities of scientific roles are both consequential and contingent. Finding out “who the guys were” (to use Sir Lewis Namier’s phrase) does indeed help to illuminate what kinds of guys they were thought to be, and, for that reason alone, any survey of images is bound to deal – to some extent at least – with what are usually called the realities of social roles. At the same time, it must be noted that such social roles are always very substantially constituted, sustained, and modified by what members of the culture think is, or should be, characteristic of those who occupy the roles, by precisely whom this is thought, and by what is done on the basis of such thoughts. In sociological terms of art, the very notion of a social role implicates a set of norms and typifications – ideals, prescriptions, expectations, and conventions thought properly, or actually, to belong to someone performing an activity of a certain kind. That is to say, images are part of social realities, and the two notions can be distinguished only as a matter of convention.
Such conventional distinctions may be useful in certain circumstances. Social action – historical and contemporary – very often trades in juxtapositions between image and reality. One might hear it said, for example, that modern American lawyers do not really behave like the high-minded professionals portrayed in official propaganda, and statements distinguishing image and reality in this way thus present themselves as real to those who wish to understand contemporary American society.
A map is a representation on paper – a picture – you understand picture? – a paper picture – showing, representing the country – yes? – showing your country in miniature – a scaled drawing on paper of – of – of –
Brian Friel, Translations
At the conclusion of the Peace of Paris in 1763, British blue-water policy bore some strange fruit in exchanging the sugar island of Gaudeloupe for “quelques arpents de neige” in the Canadian wilderness – leading to much consternation and bitterness between the elder Pitt and the pliant Scotsman, Lord Bute. This was surely the moment when an expansive British Empire was born and, in response, a new wave of French adventures. Thus, we find the self-effacing Louis de Bougainville soon to make his celebrated four-year circumnavigation (1766–9), a superb account of which was swiftly published – although Bougainville lamented, “Ce n’est ni dans les forêts du Canada, ni sur le sein des mers, que l’on se forme á l’art d’écrire.” Nonetheless, unlike the fashionable experience of European naturalists and systematizers who constrained “dans les ombres de leur cabinet … soumettent impérieusement la nature á leurs imaginations,” here was a self-described “voyageur & marin; c’est á dire, un menteur, & un imbécille.” Bougainville’s brilliant tale is as much a romance of rocky shoals, high seas, men overboard, and inevitable scurvy as much as laying-to in sheltered Pacific coves and shallow bays, behind coral shoals and the welcoming arms of Tahitians.
Older-style histories of science that depicted the growth of science as a gradual accretion of new knowledge, and that devoted much attention to identifying when discoveries were made and by whom, allocated little space to the physics of the eighteenth century. Although some interesting discoveries, especially in relation to electricity, were acknowledged, the period was generally presented as a fallow one compared with the periods of dramatic advance in physical understanding that preceded and followed it. More recently, as historians have adopted a less restricted view of their task, eighteenth-century physics has come to be seen in a more favorable light: as the period when physics became a field recognizably like the one we know today.
Physics as traditionally understood was not an experimental science, and neither was its subject matter the same as it is today. Consistent with the meaning of the Greek word φυσιζ from which it drew its name, physics was taught in universities throughout Europe as “natural philosophy,” that is, as the part of the standard undergraduate course in philosophy dealing with “nature” in general. The primary concern was with broad principles rather than particular natural effects, and above all with the nature of body and the conditions determining natural change. Everywhere for several centuries the Aristotelian treatises Physica, De caelo, De generatione et corruptione, Meteorologica, and De anima were the standard texts, and in many places they were still being used at the start of our period, notwithstanding the dramatic changes in intellectual outlook that had occurred during the preceding century and a half.
As defined in the eighteenth century, “natural history” meant description (then a synonym for “history”) and classification of everything in nature, from the cosmos to the insect. Understandably, then, few naturalists attempted surveys or syntheses of so shapeless a range of subjects. One of the few, Carl Linnaeus, tried to chart the order in all realms of nature in a series of taxonomic works devoted to the animal, vegetable, and mineral kingdoms. Another, Georges-Louis Leclerc, comte de Buffon, criticized taxonomies as incapable of accurately depicting nature in all its variety; by omitting botany, Buffon’s Histoire naturelle narrowed its focus in one respect while broadening it in others, as the author included the origin of the solar system, the history of the earth, and a treatment of animals that went beyond anatomy into such matters as environments and heredity.
Some naturalists contented themselves with producing compendia of “curiosities,” and others tried to give unity to these collections by indicating their aim of revealing, in John Ray’s famous title, The Wisdom of God Manifested in the Works of the Creation (1691). Many sought a degree of completeness by selecting either a geographical or a topical focus. As examples of the former, one can cite the long British tradition of local histories that effectively began with Robert Plot’s Oxfordshire (1677) and eventually included one literary classic, Gilbert White’s Natural History and Antiquities of Selborne (1789). Although studies of this kind seem to have been less common outside Britain, a striking feature of almost all such works was the attention given to human artifacts, chiefly those of antiquity, and often to such topics as language, customs, and migrations.
Formal systems of “non-Western science” created by the Aztec, Maya, and Inca seemed to have evaporated into thin air in the wake of the Spanish conquest. The collapse of large indigenous polities and the disappearance of courts capable of sustaining elite knowledge appear to be the cause. Nancy Farriss has argued that the Maya in Yucatan lost the institutions that had kindled their taste for large cosmic riddles. Although the Maya elites did not disappear – and actually became important brokers in the operation of colonial labor systems – they lost interest in those theological and cosmological questions that had driven the astronomical and calendrical investigations of classic and postclassic Maya civilizations. As the Maya elites were left in charge of ever more simplified polities, their interest became narrowly parochial. Under Spanish colonial rule the former complex social structures of the Inca, Maya, and Aztecs gave way to simplified communities lacking all intermediate social tiers: gone were the indigenous pan-regional polities of the past whose courts had maintained large retinues of priests, scribes, and scholars – producers of elite precolonial non-Western knowledge. The new simplified native elite class embraced Catholic images, shrines, temples, and rituals, and those few religious leaders who kept native religions (and thus non-Western scientific traditions) alive went underground, losing the source of much of their prestige, which lay in maintaining communal cohesion through public sumptuous worship. By the eighteenth century indigenous systems of knowledge had transmuted into hybrid forms of folk Catholicism and had moved to the margins of Latin American societies.
Commentaries on the Enlightenment often propose a highly schematic account of the changing relations between science and religion. Whereas the seventeenth century is credited with a notional “separation” of the sciences from religious control, the eighteenth is characterized by a more devastating form of secularization in which the methods and conclusions of the natural philosophers were turned against the authority of the established Churches. With carefully selected examples, this story can be attractive and plausible. Early in the seventeenth century, Francis Bacon (1561–1626) had warned against the mixing of biblical exegesis with natural philosophy, and, in France, René Descartes (1596–1650) had mechanized a universe no longer anthropocentric. Both men had devised stringent criteria that truth claims had to meet and both had rejected final causes from the explanation of natural phenomena. During the second half of the seventeenth century, enduring scientific societies had come into existence in both London and Paris, and within them religious disputation was banned. By the end of the century, Isaac Newton (1642–1727) had articulated his laws of motion and the law of universal gravitation, laws that to later generations would symbolize a universe characterized by order and regularity rather than divine caprice.
Newton is brought within the schema in other ways. If his Principia was a towering monument to the power of mathematical reasoning, his Opticks displayed the power of a rigorous experimental method. Seemingly the stage was set for the displacement of theology, once the queen of the sciences, by more bracing sciences that promised an improvement of the world and a brighter destiny for humankind.
Today, science is something we think we recognize when we see it; it is a part of our cultural landscape. Regarded as easily distinguished from religion, it involves the production of new knowledge rather than the reproduction of faith. Science’s stated mission is to tell truths about the natural world – truths produced by trained scientists working in specific fields. There is much argument about details, but a single method is held to lie at the heart of its production.
The processes by which new scientific knowledge is diffused or reformulated for different audiences are also generally regarded as unproblematic. First elaborated and validated in specialist journals, scientific ideas are usually thought to make their way into undergraduate textbooks and subsequently, or simultaneously, undergo popularization or reframing for a wide audience. Newspapers, magazines, television, and radio help perform the task. Ultimately, a few scientific ideas become so widespread that they can be referred to in the shorthand of jokes or cartoons.
This commonsense model of the production and diffusion of scientific knowledge is something like a fried egg, sunny-side up. At the center, the self-contained yolk represents new knowledge generated by scientists. Surrounding this is a penumbra of ever-thinning white, representing diffusion. Finally, the crackly bits at the outer edge of the white – those jokes and catchphrases – barely resemble the self-contained yolk. As another historian has described it, the transfer of scientific knowledge is often seen simplistically as moving from areas of high truth concentration to those of low truth concentration.
The Arts and Sciences brighten’d Europe’s face, Learning did no more noble blood debase, T’was honour’s genuine stamp, and dignify’d the race.
(John Mawer, The progress of language, an essay …, London, 1726)
Hence the fine arts become like the mechanical; genius is fettered by precedents; and the waving line of fancy exchanged for a perpetual round of repetitions.
(William Rutherford, A View of Antient History; including the progress of literature and fine arts, London, 1788–91)
A CENTURY OF CHANGE
Alexander Pope (1688–1744), reputedly the greatest English poet of his age and a man whose satiric lash spared no target and whose panegyric pen captured entire lives in a single couplet, exalted Isaac Newton this way in the widely read Epitaph Intended for Sir Isaac Newton In Westminster Abbey:
Nature, and Nature’s Laws lay hid in Night.
God said, Let Newton be! and All was Light.
These lines were widely quoted, paraphrased, and translated into every European language within a few years of Newton’s death in 1727. Leibniz, Voltaire, and most of the philosophes knew them by memory, as did the French and the Italians. Goethe, that unparalleled Enlightenment man (enlightened in almost all the senses in which this label was used in the eighteenth century), imagined himself in Newton’s place, and Byron composed variations on the Pope couplet for poetic sport. One could fairly predict that the Newton whom Pope epitomized as a mortal man, his couplet art transformed into an immortal – a veritable god. The analogy was this: God–Newton, Newton–light.
The eighteenth century was one of Western recognition of Japan against the Chinese background. During that period, Japanese thinkers became critical of the Chinese scholarship with which they had struggled to keep pace in the previous century; for the first time, Japanese intellectuals from the extreme eastern regions of Asia began to compare Chinese scholarship with the infiltrating Western science. It is extremely interesting to see what happens to a paradigm from one culture – and the scholarly traditions that have evolved around it – when it is introduced into another. In the following pages we shall examine the impact of this transplantation, mainly on three disciplines: mathematics, astronomy, and medicine.
The Jesuits had been evangelizing in Japan since the mid-sixteenth century. Eventually, the Japanese government, considering Christianity a threat to the cohesiveness and integrity of Japanese culture, successfully banned all Westerners from the country with the exception of Protestant Dutch traders, who were restricted to the port of Nagasaki. This ban, which remained in effect until the mid-nineteenth century, was reinforced with bans on Jesuit writings in Chinese in the 1630s and further intensified in the 1680s.
The eighteenth century was a period characterized by confrontations, exchanges, and misunderstandings between Europe and Islam. The European commercial and military expansion that began in the sixteenth and seventeenth centuries continued throughout the eighteenth century, and in its wake some early modern European technologies and scientific ideas were introduced into the Middle East. These concepts and technologies coexisted, sometimes uneasily, with medieval Islamic practices. It was a period of ambivalence among Islamic rulers as well as scholars as to the relevance or acceptability of Western science and technology.
The Napoleonic Expedition of 1798 symbolizes the organized introduction of European science, medicine, and technology into the Near East, for engineers and scientists accompanying the expedition to Egypt methodically introduced the latest European ideas while at the same time recording the indigenous technologies they encountered. Prior to that, the introduction of European scientific ideas was sporadic, and occasionally there was a lengthy time lag before their introduction into the Ottoman, Safavid, and Mughal worlds. After its introduction, the integration of a new technology into the culture occurred (if at all) only after a considerable interval of time during which there were social and sometimes ideological adaptations.
Historians have given relatively little attention to scientific, medical, and technological activities in the eighteenth century in the Islamic world. The sources for this period are fragmentary and difficult to interpret. Relatively few treatises written in Arabic, Persian, or Turkish during this period have been studied by scholars, and historians are largely dependent on records of European travelers, diplomats, and missionaries – accounts that are often superficial or prejudiced.
The eighteenth century inherited a long tradition deriving from Greek antiquity that maintained that Nature could be understood by the exercise of reason. This belief underlay centuries of university practice in which natural phenomena had been explained by the use of logical deduction from first principles largely, although not exclusively, derived from the philosophy of Aristotle. The long shadow cast by such an entrenched intellectual position was still evident for much of the eighteenth century in the links that remained between natural philosophy and the larger philosophical enterprise of explaining the fundamental purposes that underlay the works of God and humankind. At the beginning of the eighteenth century, natural philosophy remained a branch of philosophy along with metaphysics, logic, and moral philosophy.
But it was to be one of the striking features of the century that, as it progressed, natural philosophy more and more was loosened from such traditional moorings and began to assume an independent stance. Indeed, whereas once natural philosophy had deferred to metaphysics, natural philosophy increasingly assumed the status of the defining form of philosophy, which moral philosophy attempted to emulate and which called into question the worth of metaphysical inquiry. By 1771, for example, the Encyclopaedia Britannica could justify the study of moral philosophy on the grounds that it resembled natural philosophy in that it, too, “appealed to nature or fact; depended on observation; and built its reasonings on plain uncontroverted experiments.”