To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
One of the most dramatic advances in the physical sciences during the nineteenth century was the emergence of spectroscopy. It rapidly became an invaluable experimental technique for chemists and astronomers, while for physicists it opened a window upon the world of sub-atomic phenomena. Sir John Herschel played an important part, the value of which has sometimes been underestimated, in the early development of spectroscopy. This paper examines his contribution to the subject during the period 1819–61 in the light of his publications and of certain manuscript material preserved in the Royal Society's Library. Herschel corresponded with most of the scientists who did important work in spectroscopy during his lifetime, and he expressed definite opinions on most of the practical and theoretical problems that arose in it; however, the present study cannot pretend to offer a complete discussion of all aspects of the early history of spectroscopy.
The institutionalization of natural knowledge in the form of a scientific society may be interpreted in several ways. If we wish to view science as something apart, unchanging in its intellectual nature, we may regard the scientific enterprise as presenting to the sustaining social system a number of absolute and necessary organizational demands: for example, scientific activity requires acceptance as an important social activity valued for its own sake, that is, it requires autonomy; it is separate from other forms of enquiry and requires distinct institutional modes; it is public knowledge and requires a public, universalistic forum; it is productive of constant change and requires of the sustaining social system a flexibility in adapting to change. Support for such an interpretation may be found in the rise of modern science in seventeenth-century England, France, and Italy and in the accompanying rise of specifically scientific societies. Thus, the founding of the Royal Society of London may be interpreted as the organizational embodiment of immanent demands arising from scientific activity—the cashing of a blank cheque payable to science written on society's current account.
In 1875 T. H. Huxley discovered that a secretion from the mould penicillium glaucum had an ability, unconnected with oxygen deprivation, to inhibit bacterial growth. He recorded his observations in his notebooks and in a single letter to John Tyndall, who at that time was a friend of Lister and a correspondent of Pasteur. Neither Huxley nor Tyndall looked for an explanation of this phenomenon, and neither told anyone else about it.