To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Scottish Blackface lamb viability records at birth, and postnatal survival from 1 day to 14 days, from 15 days to 120 days and from 121 days to 180 days were used to determine influential factors and to estimate variance components of lamb survival traits. The binary trait viability at birth was analysed using a linear model whereas the postnatal survival traits were analysed as continuous traits using a Weibull model. The data consisted of about 15 000 survival records of lambs born from 1996 to 2005 on two farms in Scotland. The models included fixed factors that had significant effects and random direct and maternal additive genetic effects and maternal litter effects for viability at birth, and sire and maternal litter effects for the postnatal survival traits. The possible effect of maternal behaviour measured around lambing on lamb survival was investigated in separate analyses. Male lambs were found to be at a higher risk of mortality than females during all periods considered. The effect of type of birth and age of dam was more important during the preweaning period than at later ages. The postnatal hazard rate was not significantly affected by the behaviour score of the dams. The genetic merit of dams had more influence on viability at birth than the genetic merit of lambs themselves. Estimates of heritability for postnatal survival traits were in the range of 0.18 to 0.33 and were significantly greater than zero. These results indicate that lamb survival can be improved through farm management practices and genetic selection. Both animal and maternal genetic effects should be considered in breeding programmes for improving viability at birth.
N-alkanes are long-chain saturated hydrocarbons occurring in plant cuticles that can be used as chemical markers for estimating the diet composition of herbivores. An important constraint of using n-alkanes to estimate diet composition with currently employed mathematical procedures is that the number of markers must be equal or larger than the number of diet components. This is a considerable limitation when dealing with free-ranging herbivores feeding on complex plant communities. We present a novel approach for the estimation of diet composition using n-alkanes which applies equally to cases where the number of markers is lower, equal or greater than the number of plant species in the diet. The model uses linear programming to estimate the minimum and maximum proportions of each plant in the diet, and avoids the need for grouping species in order to reduce the number of estimated dietary components. We illustrate the model with two data sets of n-alkane content of plants and faeces obtained from a sheep grazing experiment conducted in Australia and a red deer study in Portugal. Our results are consistent with previous studies on those data sets and provide additional information on the proportions of individual species in the diet. Results show that sheep included in the diet high proportions of white clover (from 0.25 to 0.37), and relatively high proportions of grasses (e.g. brome from 0.14 to 0.26) but tended to avoid Lotus spp. (always less than 0.04 of the diet). For red deer we found high proportions of legumes (e.g. Trifolium angustifolium and Vicia sativa reaching maximum proportions of 0.42 and 0.30 of the diet, respectively) with grasses being less important and Cistus ladanifer, a browse, also having relevance (from 0.21 to 0.42 of the diet).
Current feed evaluation systems for dairy cattle aim to match nutrient requirements with nutrient intake at pre-defined production levels. These systems were not developed to address, and are not suitable to predict, the responses to dietary changes in terms of production level and product composition, excretion of nutrients to the environment, and nutrition related disorders. The change from a requirement to a response system to meet the needs of various stakeholders requires prediction of the profile of absorbed nutrients and its subsequent utilisation for various purposes. This contribution examines the challenges to predicting the profile of nutrients available for absorption in dairy cattle and provides guidelines for further improved prediction with regard to animal production responses and environmental pollution.
The profile of nutrients available for absorption comprises volatile fatty acids, long-chain fatty acids, amino acids and glucose. Thus the importance of processes in the reticulo-rumen is obvious. Much research into rumen fermentation is aimed at determination of substrate degradation rates. Quantitative knowledge on rates of passage of nutrients out of the rumen is rather limited compared with that on degradation rates, and thus should be an important theme in future research. Current systems largely ignore microbial metabolic variation, and extant mechanistic models of rumen fermentation give only limited attention to explicit representation of microbial metabolic activity. Recent molecular techniques indicate that knowledge on the presence and activity of various microbial species is far from complete. Such techniques may give a wealth of information, but to include such findings in systems predicting the nutrient profile requires close collaboration between molecular scientists and mathematical modellers on interpreting and evaluating quantitative data. Protozoal metabolism is of particular interest here given the paucity of quantitative data.
Empirical models lack the biological basis necessary to evaluate mitigation strategies to reduce excretion of waste, including nitrogen, phosphorus and methane. Such models may have little predictive value when comparing various feeding strategies. Examples include the Intergovernmental Panel on Climate Change (IPCC) Tier II models to quantify methane emissions and current protein evaluation systems to evaluate low protein diets to reduce nitrogen losses to the environment. Nutrient based mechanistic models can address such issues. Since environmental issues generally attract more funding from governmental offices, further development of nutrient based models may well take place within an environmental framework.
For its 2006 Annual Meeting BSAS organised an invited session on ‘Responses to Nutrients’. The session was appropriately chaired by Professor Colin Whittemore, who was responsible for the first systematic approach to the integration of information about an animal its feed and the environment in which it was kept, with a view to predicting its responses and simulating its performance (Whittemore and Fawcett, 1976). In his usual indomitable fashion Professor Whittemore questioned whether there was a need for such a session. Was there anything that we did not already about know animals responded to their intake of nutrients? After all models of growth for pigs and poultry have in the past 30 years been able not only to predict such responses, but at the same time to deal with the more challenging task of voluntary feed intake prediction. Such models have been used increasingly to optimise feed and feeding programmes in pig and poultry enterprises worldwide. On the other hand, in ruminants many applied feeding models are still largely based on meeting animal requirements.
Prediction of nutrient partitioning is a long-standing problem of animal nutrition that has still not been solved. Another substantial problem for nutritional science is how to incorporate genetic differences into nutritional models. These two problems are linked as their biological basis lies in the relative priorities of different life functions (growth, reproduction, health, etc.) and how they change both through time and in response to genetic selection. This paper presents recent developments in describing this biological basis and evidence in support of the concepts involved as they relate to nutrient partitioning. There is ample evidence that at different stages of the reproductive cycle various metabolic pathways, such as lipolysis and lipogenesis, are up or down regulated. The net result of such changes is that nutrients are channelled to differing extents to different organs, life functions and end-products. This occurs not as a homeostatic function of changing nutritional environment but rather as a homeorhetic function caused by the changing expression of genes for processes such as milk production through time. In other words, the animal has genetic drives and there is an aspect of nutrient partitioning that is genetically driven. Evidence for genetic drives other than milk production is available and is discussed. Genetic drives for other life functions than just milk imply that nutrient partitioning will change through lactation and according to genotype – i.e. it cannot be predicted from feed properties alone. Progress in describing genetic drives and homeorhetic controls is reviewed. There is currently a lack of good genetic measures of physiological parameters. The unprecedented level of detail and amounts of data generated by the advent of microarray biotechnology and the fields of genomics, proteomics, etc. should in the long-term provide the necessary information to make the link between genetic drives and metabolism. However, gene expression, protein synthesis etc, have all been shown to be environmentally sensitive. Thus, a major challenge in realising the potential afforded by this new technology is to be able to be able to distinguish genetically driven and environmentally driven effects on expression. To do this we need a better understanding of the basis for the interactions between genotypes and environments. The biological limitations of traditional evaluation of genotype × environment interactions and plasticity are discussed and the benefits of considering these in terms of trade-offs between life functions is put forward. Trade-offs place partitioning explicitly at the centre of the resource allocation problem and allow consideration of the effects of management and selection on multiple traits and on nutrient partitioning.
Relationships between genetic merit for milk production and animal parameters and various parameters of reproductive performance were examined using multilevel binary response analysis in a study of 19 dairy herds for three successive years, representing approximately 2500 cows per year. The proportion of cows intended for rebreeding that were back in-calf again within 100 days of calving (ICR-100) and the proportion of cows that reappeared again with 365 (RR-365) and 400 days (RR-400) of a previous calving were considered in addition to the traditional measures of reproductive performance. Each 100-kg increase in genetic merit for milk yield was associated with an increased interval to first service (IFS) and calving index (CI) of 1.4 ( P < 0.001) and 1.8 days ( P < 0.001), respectively, a 0.5% increase ( P < 0.05) in calving rate to first insemination (CR-1) and 0.8% increase in RR-400. Each £10 increase in £PIN (the economically weighted yield selection index used in the UK that takes account of butterfat and protein yields) was associated with an increased IFS and CI of 1.5 ( P < 0.001) and 3.0 days ( P < 0.001), respectively. Cows with increased genetic merit for milk yield and £PIN were more likely to re-calve (RR-overall; P < 0.001). Each 1000-kg increase in 305-day milk yield was associated with an increased IFS and CI of 3.2 ( P < 0.001) and 7.8 days ( P < 0.001), respectively, and a 13.6 ( P < 0.001), 22.4 ( P < 0.001), 19.9 ( P < 0.001) and 19.0% ( P < 0.001) decrease in CR-1, ICR-100, RR-365 and RR-400, respectively. A 10-kg increase in maximum yield was associated with a 6.6-day increase in CI ( P < 0.001) and a 14.9 ( P < 0.001), 18.3 ( P < 0.001), 9.6 ( P < 0.05) and 14.2% ( P < 0.001) decrease in CR-1, ICR-100, RR-365 and RR-400, respectively. Fertility performance was also associated with season of calving, lactation number and dystocia score. Level of production had a larger effect on fertility performance than genetic merit for milk production suggesting that infertility at an individual cow level is more likely to be associated with increased production and an inability to meet the nutritional requirements of the cow.
Predicting the response of poultry to nutrients has progressed to a stage where it is now not only possible to predict voluntary feed intake accurately, but broiler feeds and feeding programmes may now be optimised using the more advanced simulation models. Development of such prediction models has stimulated useful and purposeful research targeted at filling the gaps in our knowledge of critical aspects of the theory incorporated into these models. The aim of this paper was to review some of these past developments, discuss the controversy that exists in designing and interpreting response experiments, and highlight some of the most recent challenges related to the prediction of responses to nutrients by poultry. These latter include differences, brought about by selection for diverse goals, that have become apparent between modern broiler strains in their responses in feed intake and mortality, which are not independent of level of feeding or strain of broiler, as was previously believed. Uniformity, an important quality criterion in broiler processing, is also not independent of level of feeding, and the effect may now be predicted using stochastic models. It is not yet clear whether breast meat yield, the carcass component of broilers yielding the highest returns, is a function of the strain of broiler or simply that of the protein weight of the bird when processed. An important aspect of response prediction is dealing with constraints to performance: whereas it is relatively straightforward to simulate the potential performance of a broiler, such performance is often constrained by the physical, social and infectious environment, among others, providing a challenge to modellers attempting to predict actual performance. Some of these constraints to potential performance have not yet been adequately described, but are now receiving attention, suggesting that nutrient responses in poultry have the potential to be more accurately predicted in the future.
The effects of age (from 1 day post-hatch to 98 days of age) and feeding levels (feed restriction followed by overfeeding v. ad libitum feeding) on lipid deposition in breast muscle (quantity and quality, localisation) of mule ducks were determined in relation to muscle energy metabolism (glycolytic and oxidative), plasma levels of lipids, glucose and insulin, and muscle capacity for lipid uptake (characterised by lipoprotein lipase (LPL) activity). Two periods were defined for age effects on intramuscular lipids in breast muscle: − 1 to 42 days of age when lipids (mainly phospholipids and cholesterol provided by egg yolk) stored in the adipocytes during embryonic life were transferred to the muscle fibres and used for growth and energy requirements, − 42 to 98 days of age when the muscle again stored lipids (mainly triglycerides provided by liver lipogenesis), first in fibres and then in adipocytes.
Plasma glucose and insulin levels were not affected by age. Plasma levels of lipids and LPL activity in breast muscle were high at 1 and 14 days of age and then decreased, remaining stable until 98 days of age. Energy metabolism activity in the breast muscle (mainly glycolytic activity) increased with age.
Feed restriction, corresponding to 79% of ad libitum intake, applied between 42 and 75 days of age only resulted in decreases in plasma insulin concentration and total lipid content of breast muscle, mainly affecting triglyceride and mono-unsaturated fatty acid (MUFA) levels. Overfeeding increased plasma levels of insulin and lipids while glycaemia remained stable. LPL activity and total lipid levels increased in breast muscle, mainly induced by deposition of triglycerides and MUFA occurring particularly during the 2nd week of this period. Glycolytic energy metabolism decreased.
In response to age or feeding levels, muscle lipid levels and composition reflect plasma lipid levels and composition and high muscle lipid levels stimulate oxidative energy metabolism.
‘ANIMAL – An International Journal of Animal Bioscience’ is the central element in a new and exciting collaborative venture between the European Federation for Animal Science (EAAP), Institut National de la Recherche Agronomique (INRA), and British Society of Animal Science (BSAS). It merges three high-quality and successful journals (Animal Science, Animal Research and Reproduction, Nutrition, Development) into a single forward-looking publication that will reduce fragmentation in the sector, improve synergies and, we hope, act as a catalyst for integrating process-level and systems science in the animal biosciences.
Conformation scores can account for more than 20% of cattle price variation at Australian livestock sales. However, there are limited available references which define genetic factors relating objective live developmental traits to carcass composition. Weaning and post-weaning weight, height, length, girth, muscle (ratio of stifle to hip width) and fat depth of 1202 progeny from mature Hereford cows (637) mated to seven sire breeds (Jersey, Wagyu, Angus, Hereford, South Devon, Limousin and Belgian Blue) were examined for growth and development across ages. Crossbred Wagyu and Jersey were both lighter in weight and smaller in size (height, length and girth) than purebred Hereford and crossbred Angus, South Devon, Limousin and Belgian Blue. Within the five larger crossbreds, there were significant changes in relative weight from weaning to 600 days. Sire breeds differed in fat depth, with Angus being the fattest (9% on average fatter than Hereford and Wagyu), and Jersey 5% less fat than Hereford, followed by South Devon and Limousin (19% lower than Hereford) and Belgian Blue (39% lower than Hereford). Direct heritability ranged from 19 to 42% and was higher than the proportion of total phenotypic variance accounted for by maternal effects (which ranged from 0 to 17%) for most body measurement traits except for weight (38 v. 18%) and girth (36 v. 9%) traits at weaning, an indication of maternal effect on some body conformation traits at early ages. Muscularity (19 to 44%) and fat depth (26 to 43%) were moderately to highly heritable across ages. There were large differences for growth and the objective measures of body development between crossbreds with a degree of overlap among the progeny of the seven sire breeds. The variation between genetic (positive) and environmental (negative) correlations for dry versus wet season average daily gains in weight and fat, suggested the potential use of live-animal conformation traits for within breed selection of genetically superior animal in these traits across seasons.
When Michael Crawford asked me to write a final chapter for this volume he suggested that I write some ‘science fiction’ and that I should ‘let myself go’. I will take him at his word in what follows, assessing several areas of anthropological genetics in terms of their likely short-term directions and consequences. I discuss anthropological genetics specifically rather than any of the rest of human genetics since there is no shortage of science fiction available about the latter.
If there is a coherent theme in my story it is that some areas of our discipline will soon find themselves at the centre of public debates about important political, social justice and educational issues. This will be caused by market forces in some cases and by new data about human genetic diversity that will force a drastic reassessment of our views about the possibility of group equalities in contemporary industrial societies. As a discipline there is a sense in which we have had our heads hidden in the sand, earnestly teaching our students about lactase and HbS and about G6PD while maintaining the fiction, or failing to deny the fiction, that humans don't really differ at all in traits that have large visible social consequences. Other areas of our discipline will in the near future enjoy less visibility than they do now, for example the effort to read global human history from patterns in the neutral genome.
Oligonucleotide-driven, polymerase-catalyzed in vitro molecular reactions, specifically the polymerase chain reaction (PCR) and chain-termination DNA sequencing, have revolutionized our access to and understanding of genetics. Born less than three decades ago, these two techniques have together led to the phenomena of whole-genome sequencing, mass gene expression analyses, high-throughput drug discovery, and ‘disease-of-the-week’ mutation mapping – to name but a few. Major players in these advances range from the very small, like the bacterium Thermus aquaticus, that gave us thermal-stable DNA polymerase, to almost larger than life, like H. Gobind Khorana, under whose guidance the basic chemistries of oligonucleotide synthesis were developed. No less important is the smallest player of all, the fluorescent molecule. Appreciation for the potential of fluorescence as a tool in molecular biology pre-dates the advent of both chain-termination DNA sequencing and PCR, but it is only in the past few years that specific applications have begun to flower and pay huge dividends.
In this chapter I will present the basics of fluorescence relevant to molecular biology, including fluorescence resonance energy transfer (FRET). From there, the three applications in which fluorescence has made a significant contribution will be discussed. These are: chain-termination DNA sequencing, kinetic (real-time) PCR, and DNA microarrays. Finally, I will assess the role of fluorescence-aided molecular tools in Anthropological Genetics in the future as well as preview potential new fluorescence tools on the horizon.
In this chapter we have two major purposes in mind. Firstly, we review data on the distribution of human genetic variation, to address the question of the existence of races as valid biological entities for our species. Following this review, we focus on the concept of races as it is frequently used in biomedical and epidemiological work.
Human races
Introducing geographic variation in his classical text Systematics and the Origin of Species, Ernst Mayr (1947) makes a distinction between species in which biological changes from population to population are continuous, and species in which groups of populations with different character combinations are separated by borders. In the latter, the entities separated by borders are subspecies or geographic races. Similarly, in some human genetic textbooks (see for example Vogel and Motulsky, 1986) races are envisaged as large populations of individuals who have a significant fraction of their genes in common, and can be distinguished from other races by their common gene pool. Under both definitions, an increased level of genetic similarity among members of a race is the result of shared ancestry.
Human races have been the subject of intense scientific scrutiny long before genetics existed. A description of the rationale of these studies, and of the related debate on monogenism versus polygenism (in today's terms, mono- or poly-phyletic origin of humans) is in Cohen (1991) and a summary of modern studies quantifying genetic differences within and between major human groups is in Barbujani (2005).
Although hominins were present in Europe as early as ~780 thousand years ago, there is broad agreement that these archaic humans, including Neanderthals, contributed little to the contemporary European gene pool. In contrast, there is vigorous debate about the relative contributions of humans who entered in the Upper Paleolithic and Neolithic. Here, we argue that the Y-chromosomal diversity pattern is likely to have a largely Neolithic or later origin. In addition to the genome-wide influences resulting from migration, admixture and drift, the effects of positive selection are detectable around some genes, such as lactase. Studies of species associated with humans, e.g. cattle, are providing additional insights.
Why study Europe?
Introductory remarks: why Europe?
The western edge of the Asian continent has a special status in studies of history, prehistory, anthropology and many other fields, more because of the origin of the people conducting these studies than the properties of the area. It is conventionally considered as a continent in its own right, Europe, although the geographical justification for this is difficult to see and a clear definition of parts of its eastern boundary, such as between the Urals and Bosphorus, is not easy to establish. Furthermore, much of the terminology we use and attempt to apply to the rest of the world, ‘Stone Age’, ‘Bronze Age’, etc. derives from studies of Europe. Now that we can take a more global view of some of these matters, does Europe still provide a legitimate unit of enquiry?
The primary purposes of this volume are: (1) to define the field of anthropological genetics in lieu of the recent developments in molecular genetics; (2) to update the materials presented in earlier volumes on anthropological genetics. This update is essential because the recent technological developments have provided tools that can now be utilized to answer controversial evolutionary and historically based questions. The earlier four volumes dealing with anthropological genetics (Crawford and Workman, 1973; Mielke and Crawford, 1980; Crawford and Mielke, 1982; Crawford, 1984) preceded the molecular genetics revolution and focused primarily on population structure and the beginnings of genetic epidemiology. A glimpse of some of the technological and methodological innovations and their applications to anthropological genetics was contained in the special issue of Human Biology, devoted to the arrival of the new millennium and the future of the field (Crawford, 2000).
I was approached by the Executive Committee of the American Association of Anthropological Genetics (AAAG) and asked to develop a volume that would define the field of anthropological genetics and could be used as a textbook for advanced undergraduate students and graduate students. After several meetings with committees to discuss the contents of such a volume, I proposed that the book be divided into an Introduction, Conclusion plus four topical categories: Theory, Methods, General Applications, and The Human Diaspora. Initially, 19 sets of authors agreed to write chapters covering what I considered the most significant topics in anthropological genetics.
The use of ancient nucleic acids to infer population history and phylogeny is now entering its third decade, with the initial demonstration of the possibility and utility of the approach pioneered by Higuchi et al. (1984) on museum specimens of the extinct quagga, and by Pääbo (1985) on preserved soft tissue from Egyptian mummies. Now uniformly termed ancient DNA (aDNA) studies, the approach has exploded in the past decade to encompass studies of modern human origins, regional history and dynamics of prehistoric human populations, as well as phylogenetic studies of nonhuman organisms. A full review of this vast and rapidly growing literature is beyond the scope of this chapter, and interested readers are directed to several excellent and recent reviews of the field from a variety of disciplinary perspectives (e.g. Wayne et al., 1999; O'Rourke et al., 2000a; Hofreiter et al., 2001a; Kaestle and Horsburgh, 2002, Pääbo et al., 2004, Cipollaro et al., 2005).
The study of contemporary patterns of human genetic variation has proven a powerful approach to inferring human population history and evolution, although such approaches are bound by assumptions of evolutionary rates in the markers under study, effective population sizes over time, rates of population movement, levels of admixture, etc. The use of aDNA analyses in conjunction with such modern genetic studies affords a temporal perspective on human genetic variation that is, to some degree, independent of model assumptions.