To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the perspective of improving the sustainability of meat production, insects have been rapidly emerging as innovative feed ingredient for some livestock species, including poultry. However, at present, there is still limited knowledge regarding the quality and sensory traits of the derived meat. Therefore, the present study tested the effect of a partial substitution of soya bean meal and oil with defatted black soldier fly (Hermetia illucens) larvae meal (H) in the diet for growing broiler quails (Coturnix coturnix japonica) on meat proximate composition, cholesterol, amino acid and mineral contents, fatty acid profile, oxidative status and sensory characteristics. To this purpose, three dietary treatments were designed: a control diet (C) and two diets (H1 and H2) corresponding to 10% and 15% H inclusion levels, respectively, were fed to growing quails from 10 to 28 days of age. At 28 days of age, quails were slaughtered and breast meat was used for meat quality evaluations. Meat proximate composition, cholesterol content and oxidative status remained unaffected by H supplementation as well as its sensory characteristics and off-flavours perception. Differently, with increasing the dietary H inclusion, the total saturated fatty acid and total monounsaturated fatty acid proportions raised to the detriment of the polyunsaturated fatty acid fraction thus lowering the healthiness of the breast meat. The H2 diet increased the contents of aspartic acid, glutamic acid, alanine, serine, tyrosine and threonine thus further enhancing the biological value of the meat protein. As a direct result of the dietary content of Ca and P, the meat of quails fed with the highest H level, displayed the highest Ca and the lowest P values. Therefore, meat quality evaluations confirmed H to be a promising insect protein source for quails. The only potential drawback from feeding H to broiler quails regarded the fatty acid profile of the meat, therefore requiring further research efforts to understand to what extent the fatty acid profile of H can be improved.
Recent studies with Nile tilapia have shown divergent results regarding the possibility of selecting on morphometric measurements to promote indirect genetic gains in fillet yield (FY). The use of indirect selection for fillet traits is important as these traits are only measurable after harvesting. Random regression models are a powerful tool in association studies to identify the best time point to measure and select animals. Random regression models can also be applied in a multiple trait approach to analyze indirect response to selection, which would avoid the need to sacrifice candidate fish. Therefore, the aim of this study was to investigate the genetic relationships between several body measurements, weight and fillet traits throughout the growth period and to evaluate the possibility of indirect selection for fillet traits in Nile tilapia. Data were collected from 2042 fish and was divided into two subsets. The first subset was used to estimate genetic parameters, including the permanent environmental effect for BW and body measurements (8758 records for each body measurement, as each fish was individually weighed and measured a maximum of six times). The second subset (2042 records for each trait) was used to estimate genetic correlations and heritabilities, which enabled the calculation of correlated response efficiencies between body measurements and the fillet traits. Heritability estimates across ages ranged from 0.05 to 0.5 for height, 0.02 to 0.48 for corrected length (CL), 0.05 to 0.68 for width, 0.08 to 0.57 for fillet weight (FW) and 0.12 to 0.42 for FY. All genetic correlation estimates between body measurements and FW were positive and strong (0.64 to 0.98). The estimates of genetic correlation between body measurements and FY were positive (except for CL at some ages), but weak to moderate (−0.08 to 0.68). These estimates resulted in strong and favorable correlated response efficiencies for FW and positive, but moderate for FY. These results indicate the possibility of achieving indirect genetic gains for FW and by selecting for morphometric traits, but low efficiency for FY when compared with direct selection.
This study was conducted to evaluate the effect of increasing levels of glycerol in the diet on milk yield and composition, diet digestibility and some blood metabolites of dairy buffaloes in early lactation. A total of 24 buffaloes were blocked by average milk yield, parity and BW and then randomly assigned to three treatments: control without glycerol (CON); low glycerol (LG): control plus glycerol at 150 ml/day per buffalo; and high glycerol (HG): control plus glycerol at 300 ml/day per buffalo. The experimental period lasted for 60 days. Feeding LG and HG decreased (P<0.0001) dry matter intake compared with the CON. Buffaloes supplemented with LG and HG produced more milk (P<0.01) and had a greater (P<0.0001) yield of fat-corrected milk (3.5%) than those buffaloes fed control treatment. Glycerol-supplemented buffaloes showed a positive energy status indicated by reduced concentrations of non-esterified fatty acids and β-hydroxybutyrate. Feeding LG and HG tended to increase (P⩽0.10) concentrations of milk fat, and serum total protein and globulin and significantly decreased (P⩽0.05) milk urea nitrogen and somatic cells counts (SCCs) compared to the CON group. Inclusion of LG and HG had no effect on organic matter and non-fiber carbohydrate digestion, but improved dry matter (P=0.02), CP (P=0.09), ether extract (P=0.03), NDF (P=0.07) and ADF (P=0.03) digestion.
Mastitis is a major disease affecting the herds of dairy farmers worldwide. One of the indicators directly related to the widespread infection of this disease in herds is the bulk tank somatic cell count (BTSCC). Recent studies have shown that one of the risk factors associated with mastitis is the human factor. Therefore, understanding the influence of humans is essential to control and prevent the disease. The main goal of this study was to determine whether the motivations and barriers perceived by farmers could explain the variation in the BTSCC. This study was conducted at 75 dairy farms in southern Brazil. In the interviews with farmers, a survey based on Likert scale items was used to collect data. Structural equation models were used to explain the subjectivity in the ratio of observed variables and latent variables elucidating the possible causal relationships between the variables. The model indicated that some of the variation in the BTSCC can be explained by the farmer’s behavior, which is elucidated by his/her motivations and barriers. The correlations between motivations and the BTSCC and between barriers and the BTSCC were positive. These findings suggest that variations in the BTSCC can be explained by the motivations and barriers perceived by farmers and that the Fogg Behavior Model used in this study can be used to explain how human behaviors influence mastitis control. This study also indicates that consulting companies focused on improving milk quality should pay attention to the human factor to reduce these barriers.
Holstein-Friesian steer beef production is renowned globally as a secondary product of the milk industry. Grass feeding is a common practice in raising Holstein steers because of its low cost. Furthermore, grass feeding is an alternative way to produce beef with a balanced n-6 to n-3 fatty acids (FAs) ratio. However, the performance and meat quality of Holstein-Friesian cattle is more likely to depend on a high-quality diet. The aim of this study was to observe whether feeding two mixed diets; a corn-based total mixed ration (TMR) with winter ryegrass (Lolium perenne) or flaxseed oil-supplemented pellets with reed canary grass haylage (n-3 mix) provided benefits on carcass weight, meat quality and FA composition compared with cattle fed with reed canary grass (Phalaris arundinacea) haylage alone. In all, 15 21-month-old Holstein-Friesian steers were randomly assigned to three group pens, were allowed free access to water and were fed different experimental diets for 150 days. Blood samples were taken a week before slaughter. Carcass weight and meat quality were evaluated after slaughter. Plasma lipid levels and aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), creatine kinase (CK) and alkaline phosphatase (ALP) activities were determined. Diet did not affect plasma triglyceride levels and GGT activity. Plasma cholesterol levels, including low-density and high-density lipoproteins, were higher in both mixed-diet groups than in the haylae group. The highest activities of plasma AST, CK and ALP were observed in the haylage group, followed by n-3 mix and TMR groups, respectively. Carcass weight was lower in the haylage group than in the other groups and no differences were found between the TMR and n-3 mix groups. Although the n-3 mix-fed and haylage-fed beef provided lower n-6 to n-3 FAs ratio than TMR-fed beef, the roasted beef obtained from the TMR group was more acceptable with better overall meat physicochemical properties and sensory scores. According to daily cost, carcass weight and n-6 to n-3 FAs ratio, the finishing diet containing flaxseed oil-supplemented pellets and reed canary grass haylage at the as-fed ratio of 40 : 60 could be beneficial for the production of n-3-enriched beef.
This study was undertaken to provide a thorough analysis of the neutral lipid (NL) and polar lipid (PL) fractions of horse meat that included the content and distribution of acyl and alkenyl moieties in foals under different rearing conditions. Two groups of crossbred horses were studied; the first group was selected from suckling foals produced under grazing conditions and slaughtered at 4 months of age (n=8), and the second group was selected from concentrate-finished foals and slaughtered at 12 months of age (n=7). There were significant differences related to the age and feeding practices of foals which affected the intramuscular (IM) fat content and the fatty acid (FA) composition of NL and PL fractions. Samples from suckling foals were leaner and provided the highest content of methylation products from the plasmalogenic lipids, and total and n-3 polyunsaturated fatty acid (PUFA). By contrast, the meat from concentrate-finished foals had a higher IM fat level resulting in a greater accumulation of 16:0 and total monounsaturated FAs in the NL fraction, whereas the muscle PL fraction retained a similar FA composition between both groups. Linolenic acid was preferentially deposited in the NL fraction, but linoleic acid and the long-chain n-3 and n-6 PUFAs were incorporated into the PL fraction where they served as cell membrane constituents and in eicosanoid formation.
Azaperone treatment can control aggression and decrease stress due to weaning, re-grouping and hierarchical fighting of gilts and sows. However, the effects of this butyrophenone neuroleptic and sedative administered at weaning on pig reproductive function are poorly characterized. In this year-long study, a total of 619 cross-bred sows (Polish Large White×Polish Landrace) kept on a commercial farm received an i.m. injection of azaperone (Stresnil®; 2 mg/kg BW) just before weaning and were artificially inseminated during the ensuing estrus with 3×109 spermatozoa per dose of an inseminate; 1180 sows served as untreated controls. Immediately after weaning, the sows were moved to four pens of seven to nine animals each. A teaser boar was used twice daily to check for estrus and sows were bred at heat detection. Subsequently, all sows stayed in individual stalls until pregnancy testing on day 30 post-artificial insemination and were then re-grouped until farrowing. The proportion of pigs that were in estrus within 6 days post-weaning was significantly lower in azaperone-treated groups of animals than in controls (71.4% v. 84.2%). Overall, the azaperone-treated sows had a significantly longer weaning-to-estrus interval (WEI; 8.7±10.1 v. 6.3±8.1 days; mean±SD) and a significantly larger litter size (LS: 11.8±3.0 v.11.3±3.2; azaperone-treated v. control sows). Treatment of the winter-farrowing sows was associated with increased LS (12.8±2.6 and 11.3±3.1 piglets/sow, respectively; P<0.05) and longer (P<0.05) weaning-to-effective-service intervals (11.7±19.3 and 8.4±12.3 days, respectively) as well as farrowing intervals (155.7±19.7 and 152.2±16.1 days, respectively) compared with untreated controls. In the summer months, significantly longer WEIs (12.1±21.0 v. 8.4±16.9 days) were accompanied by a significant decline in LS only in azaperone-treated sows that were inseminated within 6 days post-weaning (10.8±2.9 v. 11.5±3.3 piglets/sow; azaperone-treated v. controls). Azaperone-treated second parity sows had greater LS (P<0.001) along with prolonged WEIs (P<0.05) in comparison to their respective controls, regardless of the timing of estrus. An application of azaperone at weaning increased the annual piglet productivity of winter-farrowing animals and of second parity sows but depressed it significantly in summer. The extra cost and labor due to delayed onset of estrus may cancel out any reproductive benefits of azaperone treatment.
The objective of this review paper is to describe the development and application of a suite of more than 40 computerized dairy farm decision support tools contained at the University of Wisconsin-Madison (UW) Dairy Management website http://DairyMGT.info. These data-driven decision support tools are aimed to help dairy farmers improve their decision-making, environmental stewardship and economic performance. Dairy farm systems are highly dynamic in which changing market conditions and prices, evolving policies and environmental restrictions together with every time more variable climate conditions determine performance. Dairy farm systems are also highly integrated with heavily interrelated components such as the dairy herd, soils, crops, weather and management. Under these premises, it is critical to evaluate a dairy farm following a dynamic integrated system approach. For this approach, it is crucial to use meaningful data records, which are every time more available. These data records should be used within decision support tools for optimal decision-making and economic performance. Decision support tools in the UW-Dairy Management website (http://DairyMGT.info) had been developed using combination and adaptation of multiple methods together with empirical techniques always with the primary goal for these tools to be: (1) highly user-friendly, (2) using the latest software and computer technologies, (3) farm and user specific, (4) grounded on the best scientific information available, (5) remaining relevant throughout time and (6) providing fast, concrete and simple answers to complex farmers’ questions. DairyMGT.info is a translational innovative research website in various areas of dairy farm management that include nutrition, reproduction, calf and heifer management, replacement, price risk and environment. This paper discusses the development and application of 20 selected (http://DairyMGT.info) decision support tools.
Morphometry has proven to be a useful tool, both for the clinician and horse owners, for evaluating the body condition in equids due to its objectivity, easiness and capacity for detection of important metabolic disturbances. However, limited information is available on the use of morphometric ratios to characterize regional and overall adiposity and much less about their application in different genders, ages and horses with different levels of obesity. The objectives were to evaluate body and neck absolute measurements and ratios; factors affecting them such as the influence of gender, age, appearance of the neck crest and overall body condition and; relationships among these measurements. A total of 154 Andalusian horses classified according to their gender, age, body score status and cresty neck condition were evaluated in this cross-sectional study. Two evaluators assigned a body condition score (BCS, 1 to 9) and a cresty neck score (CNS, 0 to 5) to each horse. Horses were divided into males and females; young (2 to 5 years) and adults (6 to 15 years); obese (BCS⩾7) and non-obese (BCS<7); cresty neck (CNS⩾3) and non-cresty neck horses (CNS<3). Morphometric measurements (cm) included were: height at the withers (HW); body length (BL), girth (GC) and waist (WC) circumferences; neck length (NL); three neck circumferences (NCs), over the first (NC25%), the second (NC50%) and the third part (NC75%) of the NL and neck crest height (NCH). These measurements were also used to calculate the following ratios: GC : HW, WC : HW, GC : BL, WC : BL, NC25% : HW, NC50% : HW, NC75% : HW, NC25% : BL, NC50% : BL, NC75% : BL, NC25% : NL, NC50% : NL, NC75% : NL, NC25% : NCH, NC50% : NCH and NC75% : NCH. The results showed that most of the absolute measurements and ratios were greater than those described in other light breeds. In addition, most neck ratios were higher (P<0.050) in males than in females, however, all body ratios were greater (P<0.001) in females. Among the absolute measurements, WC in obese horses and NC25% and NC75% in cresty neck horses highlighted as higher. Either GC : HW or WC : HW and NC75% : BL were alternative surrogates for the appraisal of overall and regional adiposity in Andalusians. Several interactions were observed between the gender and adiposity scoring systems affecting the morphometric evaluation. This study establishes absolute morphometric measurements and ratios in Andalusian horses. It also highlights the variability of morphometric values and how the outcome of these can be influenced by demographic variables and the breed analyzed. Further studies are necessary to set morphometric reference values in other breeds.
Accurate genomic analyses are predicated on access to a large quantity of accurately genotyped and phenotyped animals. Because the cost of genotyping is often less than the cost of phenotyping, interest is increasing in generating genotypes for phenotyped animals. In some instances this may imply the requirement to genotype older animals with greater phenotypic information content. Biological material for these older informative animals may, however, no longer exist. The objective of the present study was to quantify the ability to impute 11 129 single nucleotide polymorphism (SNP) genotypes of non-genotyped animals (in this instance sires) from the genotypes of their progeny with or without including the genotypes of the progenys’ dams (i.e. mates of the sire to be imputed). The impact on the accuracy of genotype imputation by including more progeny (and their dams’) genotypes in the imputation reference population was also quantified. When genotypes of the dams were not available, genotypes of 41 sires with at least 15 genotyped progeny were used for the imputation; when genotypes of the dams were available, genotypes of 21 sires with at least 10 genotyped progeny were used for the imputation. Imputation was undertaken exploiting family and population level information. The mean and variability in the proportion of genotypes per individual that could not be imputed reduced as the number of progeny genotypes used per individual increased. Little improvement in the proportion of genotypes that could not be imputed was achieved once genotypes of seven progeny and their dams were used or genotypes of 11 progeny without their respective dam’s genotypes were used. Mean imputation accuracy per individual (depicted by both concordance rates and correlation between true and imputed) increased with increasing progeny group size. Moreover, the range in mean imputation accuracy per individual reduced as more progeny genotypes were used in the imputation. If the genotype of the mate of the sire was also used, high accuracy of imputation (mean genotype concordance rate per individual of 0.988), with little additional benefit thereafter, was achieved with seven genotyped progeny. In the absence of genotypes on the dam, similar imputation accuracy could not be achieved even using genotypes on up to 15 progeny. Results therefore suggest, at least for the SNP density used in the present study, that it is possible to accurately impute the genotypes of a non-genotyped parent from the genotypes of its progeny and there is a benefit of also including the genotype of the sire’s mate (i.e. dam of the progeny).
In the present study, grape pomace (GP) was used as feed additive in the diet of weaned piglets in order to develop innovative feedstuffs and to investigate their potential beneficial effects on welfare, productivity and meat quality. For examining the antioxidant capacity of the experimental feeds, 24 piglets of 20 days old were assigned to two experimental groups receiving standard or experimental diet for 30 days. Blood and tissues collections were performed at four different time-points, 2, 20, 35 and 50 days post birth. The collected tissues were brain, heart, kidney, liver, lung, quadriceps muscle, pancreas, spleen and stomach. The following oxidative stress markers were assessed: reduced glutathione (GSH), catalase activity, total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS), protein carbonyls (CARB) and H2O2 decomposition activity. The effect on bacterial growth was assessed by examining microbial populations in piglets’ fecal microbiota. Furthermore, the average daily gain (ADG) was calculated and the fatty acid profile of quadriceps muscle was assessed. The results showed that piglets fed with the diet supplemented with GP, had significantly increased antioxidants mechanisms in almost all the tissues as shown by increases in GSH, H2O2 decomposition activity and TAC compared with control group. Piglets fed with the experimental diet exhibited decreased oxidative stress-induced damage to lipids and proteins as shown by decreases in TBARS and CARB in GP group compared with control. In addition, the experimental diet increased significantly ADG (by 23.65%) (P<0.05) and enhanced the growth of facultative probiotic bacteria (by up to 1.2 log colony forming units (CFU)/g) (P<0.05) and lactic acid bacteria (by up to 2.0 log CFU/g) (P<0.05) in GP group compared with the control group. GP supplementation inhibited the growth of pathogen populations such as Enterobacteriacae (by up to 1.8 log CFU/g) (P<0.05) and Campylobacter jejuni (by up to 1.0 log CFU/g) (P<0.05). Regarding fatty acid composition of meat, GP inclusion in piglets’ diet increased significantly n-3 fatty acids (EPA; C20 : 5n-3, DHA; C22 : 6n-3, α-linolenic acid; C18 : 3n-3) and decreased significantly n-6/n-3 ratio compared with control (P<0.05). The results suggested that dietary GP supplementation may have a beneficial impact on piglets’ welfare and may improve productivity as well as meat quality.
In the context of determining the sustainable carrying capacity of dry-Mediterranean herbaceous rangelands, we examined the effect of animal density on cattle nutrition, which is fundamental to animal performance and welfare. The effects on dietary components of low (0.56 cows/ha; L) and high (1.11 cows/ha; H) animal densities were monitored for three consecutive years in grazing beef cows. In the dry season (summer and early autumn), cows had free access to N-rich poultry litter (PL) given as a dietary supplement. In each season, near-IR spectroscopy (NIRS) was used to predict the chemical composition of herbage samples (ash, NDF, CP, in vitro dry matter digestibility (IVDMD) and metabolizable energy (ME) content from IVDMD). Near-IR spectroscopy was applied also to faecal samples to determine the chemical composition of the diet selected by the animal, as well as the contents of ash, NDF and CP in the faeces themselves. A faecal-NIRS equation was applied to estimate the dietary proportion of PL. Seasonal categories were green, dry without PL supplementation and dry with it. We found no effects of animal density on nutrition during the green season but effects were apparent when cows consumed dry pasture. Ash content predicted by faecal NIRS was higher in the diet than in plant samples clipped from pasture, which infers that cows ingested soil. Dietary and faecal ash contents were higher (P<0.05) at the H, implying greater soil intake in these animals. During the dry period, dietary contents of ME were higher in L than in H (P<0.05). Poultry litter supplementation was associated with a marked increase (P<0.01) in dietary and faecal CP contents. Poultry litter represented 0.45 and 0.59 of the diet in treatments L and H, respectively (P<0.05). Consequently, treatment H had higher faecal protein (P<0.05). A tendency of higher dietary protein (P=0.08) and lower dietary NDF (P=0.10) in treatment H was probably related to greater PL ingestion. Given that high and sustained rates of poultry litter consumption are detrimental to animal health, the above results cast doubts on the long-term sustainability of the higher of the animal densities tested. Although it may be sustainable vis-à-vis the vegetation, treatment H may have exceeded the boundaries of what is acceptable for cow health. Chemical information revealed with NIRS can be used to evaluate whether animal densities are compatible with animal health and welfare standards and can play a role in determining the carrying capacity of Mediterranean rangelands.
In nutrition studies, para-aminohippuric acid (PAH) is a marker frequently used to measure blood flow in pigs, which is essential for estimating portal-drained viscera (PDV) flux of nutrients. The aim of this study was to evaluate the PAH analytical method by means of qualimetric statistical procedures to estimate the matrix effect and the accuracy and limits of quantitation of the method. Net PDV flux of nutrients was determined in five multi-catheterized pigs using water, plasma or commercial serum as standard matrix. A proportional systematic error due to matrix effect was found for plasma and serum. Mean recovery was 99.4%, and intra- and inter-day precision of the method was 2.4% and 3.8% relative standard deviation, respectively. The limit of quantification was 0.22 mg PAH/l. Use of water for the PAH standard curves underestimated portal blood flow compared with PAH standards prepared with plasma or commercial serum (706, 954 and 927 ml/min; P<0.05, respectively). Consequently, PDV O2 consumption, glucose and amino acids fluxes were underestimated by 33% (P<0.001). In conclusion, our results stress the importance of using plasma from pigs not infused with PAH or alternatively commercial pig serum to prepare PAH standards to determine blood flow in pigs to avoid underestimation of blood flow.
Little is known about cheese-making efficiency at the individual cow level, so our objective was to study the effects of herd productivity, individual herd within productivity class and breed of cow within herd by producing, then analyzing, 508 model cheeses from the milk of 508 cows of six different breeds reared in 41 multi-breed herds classified into two productivity classes (high v. low). For each cow we obtained six milk composition traits; four milk nutrient (fat, protein, solids and energy) recovery traits (REC) in curd; three actual % cheese yield traits (%CY); two theoretical %CYs (fresh cheese and cheese solids) calculated from milk composition; two overall cheese-making efficiencies (% ratio of actual to theoretical %CYs); daily milk yield (dMY); and three actual daily cheese yield traits (dCY). The aforementioned phenotypes were analyzed using a mixed model which included the fixed effects of herd productivity, parity, days in milk (DIM) and breed; the random effects were the water bath, vat, herd and residual. Cows reared in high-productivity herds yielded more milk with higher nutrient contents and more cheese per day, had greater theoretical %CY, and lower cheese-making efficiency than low-productivity herds, but there were no differences between them in terms of REC traits. Individual herd within productivity class was an intermediate source of total variation in REC, %CY and efficiency traits (10.0% to 17.2%), and a major source of variation in milk yield and dCY traits (43.1% to 46.3%). Parity of cows was an important source of variation for productivity traits, whereas DIM affected almost all traits. Breed within herd greatly affected all traits. Holsteins produced more milk, but Brown Swiss cows produced milk with higher actual and theoretical %CYs and cheese-making efficiency, so that the two large-framed breeds had the same dCY. Compared with the two large-framed breeds, the small Jersey cows produced much less milk, but with greater actual and theoretical %CYs, similar efficiencies and a slightly lower dCY. Compared with the average of the specialized dairy breeds, the three dual-purpose breeds (Simmental and the local Rendena and Alpine Grey) had, on average, similar dMY, lower actual and theoretical %CY, similar fat and protein REC, and slightly greater cheese-making efficiency.
We studied the genetics of cheese-related latent variables (factors; Fs) for application in dairy cattle breeding. In total, 26 traits, recorded in 1264 Brown Swiss cows, were analyzed through multivariate factor analysis (MFA). Traits analyzed were descriptors of milk quality and yield (including protein fractions) and measures of coagulation, curd firmness (CF), cheese yields (%CY) and nutrient recoveries in the curd (REC). A total of 10 Fs (mutual orthogonal with a varimax rotation) were obtained. To assess the practical use of the Fs into breeding, we inferred their genetic parameters using single and bivariate animal models under a Bayesian framework. Heritability estimates (intra-herd) varied between 0.11 and 0.72 (F3: Yield and F7: κ-β-CN, respectively). The Fs underlined basic characteristics of the cheese-making process, milk components and udder health, while retaining 74% of the original variability. The first two Fs were indicators of the CY percentage (F1: %CY) and the CF process (F2: CFt), and presented similar heritability estimates: 0.268 and 0.295, respectively. The third factor was associated with the yield of milk and solids (F3: Yield) characterized by a low heritability (0.108) and the fourth with the cheese nitrogen (N) (F4: Cheese N) that conversely appeared to be characterized by a high heritability (0.618). Three Fs were associated with the proportion of the basic milk caseins on total milk protein (F5: as1-β-CN, F7: κ-β-CN, F8: as2-CN), also highly heritable (0.565, 0.723 and 0.397, respectively) and 1 factor with the phosphorylated form of the as1-CN (F9: as1-CN-Ph; 0.318). Moreover, 1 factor was linked to the whey protein α-LA (F10: α-LA; 0.147). An indicator factor of a cow’s udder health (F6: Udder health) was also obtained and showed a moderate heritability (0.204). Although the Fs were phenotypically uncorrelated, considerable additive genetic correlations existed among them, with highest values observed between F10: α-LA and F6: Udder health (−0.67) as well as between F9: as1-CN-Ph and F3: Yield (−0.60). Our results show the usefulness of MFA in dairy cattle breeding. The ability to replace a large number of variables with a few latent indicators of the same biological meaning marks MFA as a valuable tool for developing breeding strategies to improve cow’s cheese-related traits.
The Brangus breed was developed to combine the superior characteristics of both of its founder breeds, Angus and Brahman. It combines the high adaptability to tropical and subtropical environments, disease resistance, and overall hardiness of Zebu cattle with the reproductive potential and carcass quality of Angus. It is known that the major histocompatibility complex (MHC, also known as bovine leucocyte antigen: BoLA), located on chromosome 23, encodes several genes involved in the adaptive immune response and may be responsible for adaptation to harsh environments. The objective of this work was to evaluate whether the local breed ancestry percentages in the BoLA locus of a Brangus population diverged from the estimated genome-wide proportions and to identify signatures of positive selection in this genomic region. For this, 167 animals (100 Brangus, 45 Angus and 22 Brahman) were genotyped using a high-density single nucleotide polymorphism array. The local ancestry analysis showed that more than half of the haplotypes (55.0%) shared a Brahman origin. This value was significantly different from the global genome-wide proportion estimated by cluster analysis (34.7% Brahman), and the proportion expected by pedigree (37.5% Brahman). The analysis of selection signatures by genetic differentiation (Fst) and extended haplotype homozygosity-based methods (iHS and Rsb) revealed 10 and seven candidate regions, respectively. The analysis of the genes located within these candidate regions showed mainly genes involved in immune response-related pathway, while other genes and pathways were also observed (cell surface signalling pathways, membrane proteins and ion-binding proteins). Our results suggest that the BoLA region of Brangus cattle may have been enriched with Brahman haplotypes as a consequence of selection processes to promote adaptation to subtropical environments.
Fetuin A (also known as α2-Heremans–Schmid glycoprotein) is a protein primarily expressed by the liver and secreted into the blood. Previous studies have suggested that plasma concentrations of fetuin A are elevated with impaired growth rate in swine. The present study was designed to examine the relationship of porcine fetuin A with growth rate in the pig and to also elucidate the regulation of fetuin A expression by examining the hormonal and cytokine regulation of fetuin A mRNA abundance in hepatocytes prepared from suckling piglets. Quantitative real-time PCR assay was used to quantify the number of fetuin A mRNA molecules/molecule cyclophilin mRNA. Total RNA was isolated from liver of three different groups of pigs to assess changes in mRNA abundance of fetuin A: normal piglets at day 1, day 7 day 21 or 6 months of age (n=6 for each age); runt and control piglets at day 1 of age (n=4); slow growing and normal growing piglets at 21 days of age (n=8). Following birth, fetuin A gene expression increased from day 1 and 7 of age (P<0.05), and then declined at 21 days of age (P<0.05), with a much greater decline to 6 months of age (P<0.01). Fetuin A mRNA abundance was higher in runt pigs v. their normal birth weight littermates (P<0.05). Similarly, fetuin A gene expression was higher in livers of pigs that were born at a normal weight but that grew much slower than littermates with the same birth weight (P<0.05). Hepatocytes were isolated from preweaned piglets and maintained in serum-free monolayer culture for up to 72 h to permit examination of the influences of hormones, cytokines and redox modifiers on fetuin A mRNA abundance. Fetuin A gene expression was enhanced by glucagon, T3 and resveratrol (P<0.05). Growth hormone, cytokines (interleukin6, tumor necrosis factor-α) and antioxidants (N-acetylcysteine, quercertin) reduced fetuin A mRNA abundance (P<0.05). A role for fetuin A in postnatal development is suggested by the differences in fetuin A mRNA abundance between runt piglets or slow growing piglets and their normal growing sized littermates. The hepatocyte experiments suggest multiple hormones and cytokines may contribute to the regulation of fetuin A during early growth of the pig.