To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study investigated the effects of rider weight in the BW ratio (BWR) range common for Icelandic horses (20% to 35%), on stride parameters in tölt in Icelandic horses. The kinematics of eight experienced Icelandic school horses were measured during an incremental exercise test using a high-speed camera (300 frames/s). Each horse performed five phases (642 m each) in tölt at a BWR between rider (including saddle) and horse starting at 20% (BWR20) and increasing to 25% (BWR25), 30% (BWR30), 35% (BWR35) and finally 20% (BWR20b) was repeated. One professional rider rode all horses and weight (lead) was added to saddle and rider as needed. For each phase, eight strides at speed of 5.5 m/s were analyzed for stride duration, stride frequency, stride length, duty factor (DF), lateral advanced placement, lateral advanced liftoff, unipedal support (UPS), bipedal support (BPS) and height of front leg action. Stride length became shorter (Y=2.73−0.004x; P<0.01) and more frequent (Y=2.56+0.002x; P<0.001) with added weight. Duty factor and BPS increased with increased BWR (P<0.001), whereas UPS decreased (P<0.001). Lateral advanced timing of limb placement and liftoff and height of front leg action were not affected by BWR (P>0.05). In conclusion, increased BWR decreased stride length and increased DF proportionally to the same extent in all limbs, whereas BPS increased at the expense of decreased UPS. These changes can be expected to decrease tölt quality when subjectively evaluated according to the breeding goals for the Icelandic horse. However, beat, symmetry and height of front leg lifting were not affected by BWR.
This study examined the effect of increasing BW ratio (BWR) between rider and horse, in the BWR range common for Icelandic horses (20% to 35%), on heart rate (HR), plasma lactate concentration (Lac), BWR at Lac 4 mmol/l (W4), breathing frequency (BF), rectal temperature (RT) and hematocrit (Hct) in Icelandic horses. In total, eight experienced school-horses were used in an incremental exercise test performed outdoors on an oval riding track and one rider rode all horses. The exercise test consisted of five phases (each 642 m) in tölt, a four-beat symmetrical gait, at a speed of 5.4±0.1 m/s (mean±SD), where BWR between rider (including saddle) and horse started at 20% (BWR20), was increased to 25% (BWR25), 30% (BWR30), and 35% (BWR35) and finally decreased to 20% (BWR20b). Between phases, the horses were stopped (~5.5 min) to add lead weights to specially adjusted saddle bags and a vest on the rider. Heart rate was measured during warm-up, the exercise test and after 5, 15 and 30 min of recovery and blood samples were taken and BF recorded at rest, and at end of each of these aforementioned occasions. Rectal temperature was measured at rest, at end of the exercise test and after a 30-min recovery period. Body size and body condition score (BCS) were registered and a clinical examination performed on the day before the test and for 2 days after. Heart rate and BF increased linearly (P<0.05) and Lac exponentially (P<0.05) with increasing BWR. The W4 was 22.7±4.3% (individual range 17.0% to 27.5%). There was a positive correlation between back BCS and W4 (r=0.75; P=0.032), but no other correlations between body measurements and W4 were found. Hematocrit was not affected by BWR (P>0.05), but negative correlations (P<0.05) existed between body size measurements and Hct. While HR, Hct and BF recovered to values at rest within 30 min, Lac and RT did not. All horses had no clinical remarks on palpation and at walk 1 and 2 days after the test. In conclusion, increasing BWR from 20% to 35% resulted in increased HR, Lac, RT and BF responses in the test group of experienced adult Icelandic riding horses. The horses mainly worked aerobically until BWR reached 22.7%, but considerable individual differences (17.0% to 27.5%) existed that were not linked to horse size, but to back BCS.
Many fibre sources can help the adaptation of piglets at weaning, improving the growth. In this study, the effects of a dietary crude fibre concentrate (CFC) on piglet’s growth was investigated. From 31 to 51 days of age, 108 weaned piglets (D×(Lw×L)), had access to two isofibrous, isoenergetic and isonitrogenous diets, supplemented with 1% of CFC (CFC group) or not (control (CON) group). From days 52 to 64 all piglets received the same starter diet. During the dietary treatment period the CFC group showed higher average daily gain, average daily feed intake and feed efficiency (P<0.001) than CON group. At 64 days of age, BW was higher in CFC group compared with CON group (P<0.001). Blood samples were collected at days 31, 38, 45 and 52 of age. From days 31 to 52 significant differences in the somatotropic axis between groups were observed. In particular, growth hormone levels were higher only at the end of the 1st week of dietary treatment (P<0.05) in CFC group animals compared with CON group animals. The IGF-I trend was similar between groups even if the IGF-I levels were higher in the CFC group than CON group 1 week after starting treatment (P<0.01). The IGF-binding protein 3 (IGFBP-3) levels were higher in the first 2 weeks of dietary treatment and lower in the 3rd week in CON group compared with CFC group (P<0.01). Specifically, the IGFBP-3 profile was consistent with that of IGF-I in CFC group but not in CON group. At the same time, an increase of leptin in CFC compared with CON group was observed (P<0.05). Piglets fed the CFC diet showed a lower diarrhoea incidence (P<0.05) and a lower number of antibiotic interventions (P<0.05) than CON diet from 31 to 51 days of age. Pig-major acute-phase protein plasma level (P<0.01) and interleukin-6 gene expression (P<0.05) were higher in CON group than CFC group at the end of 1st week of dietary treatment. In conclusion, this study showed that CFC diet influences the hormones related to energy balance enhancing the welfare and growth of piglets. Furthermore, the increase in feed intake during 3 weeks of dietary treatment improved the feed efficiency over the entire post-weaning period.
Around 70% of total seed phosphorus is represented by phytate which must be hydrolysed to be bioavailable in non-ruminant diets. The limited endogenous phytase activity in non-ruminant animals make it common practice to add an exogenous phytase source to most poultry and pig feeds. The mature grain phytase activity (MGPA) of cereal seeds provides a route for the seeds themselves to contribute to phytate digestion, but MGPA varies considerably between species and most varieties in current use make negligible contributions. Currently, all phytases used for feed supplementation and transgenic improvement of MGPA are derived from microbial enzymes belonging to the group of histidine acid phosphatases (HAP). Cereals contain HAP phytases, but the bulk of MGPA can be attributed to phytases belonging to a completely different group of phosphatases, the purple acid phosphatases (PAPhy). In recent years, increased MGPAs were achieved in cisgenic barley holding extra copies of barley PAPhy and in the wheat HIGHPHY mutant, where MGPA was increased to ~6200 FTU/kg. In the present study, the effect of replacing 33%, 66% and 100% of a standard wheat with HIGHPHY wheat was compared with a control diet with and without 500 FTU of supplemental phytase. Diets were compared by evaluating broiler performance, ileal Ca and P digestibility and tibia development, using nine replicate pens of four birds per diet over 3 weeks from hatch. There were no differences between treatments in any tibia or bird performance parameters, indicating the control diet did not contain sufficiently low levels of phosphorus to distinguish effect of phytase addition. However, in a comparison of the two wheats, the ileal Ca and P digestibility coefficients for the 100% HIGHPHY wheat diets are 22.9% and 35.6% higher, respectively, than for the control diet, indicating the wheat PAPhy is functional in the broiler digestive tract. Furthermore, 33% HIGHPHY replacement of conventional wheat, significantly improved Ca and P digestibility over the diet-supplemented exogenous phytase, probably due to the higher phytase activity in the HIGHPHY diet (1804 v. 1150 FTU). Full replacement by HIGHPHY gave 14.6% and 22.8% higher ileal digestibility coefficients for Ca and P, respectively, than for feed supplemented with exogenous HAP phytase at 500 FTU. This indicates that in planta wheat PAPhys has promising potential for improving P and mineral digestibility in animal feed.
The fruit of Ligustrum lucidum (FLL, Nuzhenzi in Chinese) is an important traditional medicine, and have attracted significant research attention because of their various biological activities. However, there are few research reports available on the use of FLL as a feed additive in livestock nutrition, particularly in layers. This study was conducted to determine the effects of supplementation of the diet of laying hens with FLL on laying performance, egg quality and blood metabolites. A total of 360 72-week-old hens were allocated to three dietary treatments (eight replications of 15 hens/treatment group) and were fed either a control diet or a diet supplemented with an inclusion level of 0.25% or 0.50% of FLL powder in the final feed, until 78 weeks of age. Hens were housed in a three-tier cage system. Feed and water were provided ad libitum. Blood samples and eggs were collected at the end of the experiment. The results showed that dietary supplementation with FLL did not affect egg weight, feed conversion ratio, eggshell thickness, albumen height, egg yolk color, eggshell breaking strength or egg shape index. However, FLL supplementation significantly decreased (P<0.001) mortality, cracked-egg rate and blood serum levels of cholesterol, low-density lipoprotein cholesterol, triglycerides and alanine aminotransferase, and increased (P<0.001) blood serum levels of high-density lipoprotein cholesterol. No differences in serum levels of total protein, albumin, glucose, calcium, aspartate aminotransferase or alkaline phosphatase were observed in hens fed FLL compared with the control group. It can be concluded that FLL, at a supplementation level of 0.25% final feed, can be used as an effective feed additive to improve the performance of laying hens during the late laying period.
Visual Image analysis (VIA) of carcass traits provides the opportunity to estimate carcass primal cut yields on large numbers of slaughter animals. This allows carcases to be better differentiated and farmers to be paid based on the primal cut yields. It also creates more accurate genetic selection due to high volumes of data which enables breeders to breed cattle that better meet the abattoir specifications and market requirements. In order to implement genetic evaluations for VIA primal cut yields, genetic parameters must first be estimated and that was the aim of this study. Slaughter records from the UK prime slaughter population for VIA carcass traits was available from two processing plants. After edits, there were 17 765 VIA carcass records for six primal cut traits, carcass weight as well as the EUROP conformation and fat class grades. Heritability estimates after traits were adjusted for age ranged from 0.32 (0.03) for EUROP fat to 0.46 (0.03) for VIA Topside primal cut yield. Adjusting the VIA primal cut yields for carcass weight reduced the heritability estimates, with estimates of primal cut yields ranging from 0.23 (0.03) for Fillet to 0.29 (0.03) for Knuckle. Genetic correlations between VIA primal cut yields adjusted for carcass weight were very strong, ranging from 0.40 (0.06) between Fillet and Striploin to 0.92 (0.02) between Topside and Silverside. EUROP conformation was also positively correlated with the VIA primal cuts with genetic correlation estimates ranging from 0.59 to 0.84, whereas EUROP fat was estimated to have moderate negative correlations with primal cut yields, estimates ranged from −0.11 to −0.46. Based on these genetic parameter estimates, genetic evaluation of VIA primal cut yields can be undertaken to allow the UK beef industry to select carcases that better meet abattoir specification and market requirements.
Farm animal genetic resources are threatened worldwide. Participation in markets, while representing a crucial way out of poverty for many smallholders, affects genetic management choices with associated sustainability concerns. This paper proposes a contextualized study of the interactions between markets and animal genetic resources management, in the case of sheep markets in Ouagadougou, Burkina Faso. It focusses on the organization of marketing chains and the valuation of genetic characteristics by value chain actors. Marketing chain characterization was tackled through semi-structured interviews with 25 exporters and 15 butchers, both specialized in sheep. Moreover, revealed preference methods were applied to analyse the impact of animals’ attributes on market pricing. Data were collected from 338 transactions during three different periods: Eid al-Adha, Christmas and New Year period, and a neutral period. The neutral period is understood as a period not close to any event likely to influence the demand for sheep. The results show that physical characteristics such as live weight, height at withers and coat colour have a strong influence on the animals’ prices. Live weight has also had an increasing marginal impact on price. The different markets (local butcher, feasts, export market, sacrifices) represent distinct demands for genetic characteristics, entailing interesting consequences for animal genetic resource management. Any breeding programme should therefore take this diversity into account to allow this sector to contribute better to a sustainable development of the country.
The vast majority of piglets reared in the European Union (EU) and worldwide is tail docked to reduce the risk of being tail bitten, even though EU animal welfare legislation bans routine tail docking. Many conventional herds experience low levels of tail biting among tail docked pigs, however it is not known, what the prevalence would have been had the pigs not been tail docked. The aim of this study was to compare the prevalence of tail lesions between docked and undocked pigs in a conventional piggery in Denmark with very low prevalence of tail biting among tail docked pigs. The study included 1922 DanAvl Duroc×(Landrace×Large White) female and castrated male pigs (962 docked and 960 undocked). Docked and undocked pigs were housed under the same conditions in the same room but in separate pens with 20 (±0.03) pigs/pen. Pigs had ad libitum access to commercial diets in a feed dispenser. Manipulable material in the form of chopped straw was provided daily on the floor (~10 g/pig per day), and each pen had two vertically placed soft wood boards. From weaning to slaughter, tail wounds (injury severity and freshness) were scored every 2nd week. No clinical signs of injured tails were observed within the tail docked group, whereas 23.0% of the undocked pigs got a tail lesion. On average, 4.0% of the pigs with undocked tails had a tail lesion on tail inspection days. More pens with tail lesions were observed among pigs weighing 30 to 60 kg (34.3%; P<0.05) than in pens with pigs weighing 7 to 30 kg (13.0%) and 60 to 90 kg (12.8%). Removal of pigs to a hospital pen was more likely in undocked pens (P<0.05, 47.7% undocked pens and 22.9% docked pens). Finally, abattoir meat inspection data revealed more tail biting remarks in undocked pigs (P<0.001). In conclusion, this study suggests that housing pigs with intact tails in conventional herds with very low prevalence of tail biting among tail docked pigs, will increase the prevalence of pigs with tail lesions considerably, and pig producers will need more hospital pens. Abattoir data indicate that tail biting remarks from meat inspection data severely underestimate on-farm prevalence of tail lesions.
In dairy cows, subjected to a G6G protocol, objectives were to determine effects of (1) extending the interval from prostaglandin F2α (PGF2α) to gonadotropin-releasing hormone (GnRH) during presynchronization; and (2) adding a second PGF2α treatment before artificial insemination (AI), on ovarian response, plasma progesterone (P4) concentrations and pregnancy per AI (P/AI). In a 2×2 factorial design, lactating cows were randomly assigned to one of four timed AI (TAI) protocols: (1) G6G (n=149), one injection of PGF2α, GnRH 2 days later and a 7-day Ovsynch (GnRH, 7 days, PGF2α, 56 h, GnRH, 16 h, TAI) was initiated 6 days later; (2) G6GP (n=144), an additional PGF2α treatment (24 h after the first) during Ovsynch of the G6G protocol; (3) MG6G, one injection of PGF2α, GnRH 4 days later before initiation of the G6G protocol; and (4) MG6GP, an additional PGF2α treatment (24 h after the first) during Ovsynch of the MG6G protocol. Blood samples were collected (subset of 200 cows) at first GnRH and PGF2α of the Ovsynch, and at TAI to measure P4. Ultrasound examinations were performed in a subset of 406 cows to evaluate ovarian response at various times of Ovsynch, and in all cattle to determine pregnancy status at 32 and 60 days after TAI. Extending the interval by 2 days between PGF2α and GnRH during presynchronization increased (P<0.01) ovulatory response to first GnRH of Ovsynch, circulating P4 during Ovsynch, and P/AI at 32 and 60 days after TAI. Adding a second PGF2α treatment before AI increased the proportion of cows with luteal regression (P=0.04), improved P/AI at 60 days after TAI (P=0.05), and reduced pregnancy loss between 30 and 60 days after TAI (P=0.04). In summary, extending the interval from PGF2α to GnRH during presynchronization increased response to first GnRH of Ovsynch and P4 concentrations during Ovsynch, whereas adding a second PGF2α treatment before AI enhanced luteal regression. Both modifications of the G6G protocol improved fertility in lactating dairy cows.