To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Dissatisfaction with available graduate-level textbooks on the subject of dynamics has been widespread throughout the engineering and physics communities for some years among teachers, students, and employers of university graduates; furthermore, this dissatisfaction is growing at the present time. A major reason for this is that engineering graduates entering industry with advanced degrees, when asked to solve dynamics problems arising in fields such as multibody spacecraft attitude control, robotics, and design of complex mechanical devices, find that their education in dynamics, based on the textbooks currently in print, has not equipped them adequately to perform the tasks confronting them. Similarly, physics graduates often discover that, in their education, so much emphasis was placed on preparation for the study of quantum mechanics, and the subject of rigid body dynamics was slighted to such an extent, that they are handicapped, both in industry and in academic research, by their inability to design certain types of experimental equipment, such as a particle detector that is to be mounted on a planetary satellite. In this connection, the ability to analyze the effects of detector scanning motions on the attitude motion of the satellite is just as important as knowledge of the physics of the detection process itself. Moreover, the graduates in question often are totally unaware of the deficiencies in their dynamics education. How did this state of affairs come into being, and is there a remedy?
For the most part, traditional dynamics texts deal with the exposition of eighteenth-century methods and their application to physically simple systems, such as the spinning top with a fixed point, the double pendulum, and so forth. The reason for this is that, prior to the advent of computers, one was justified in demanding no more of students than the ability to formulate equations of motion for such simple systems, for one could not hope to extract useful information from the equations governing the motions of more complex systems. Indeed, considerable ingenuity and a rather extensive knowledge of mathematics were required to analyze even simple systems. Not surprisingly, therefore, ever more attention came to be focused on analytical intricacies of the mathematics of dynamics, while the process of formulating equations of motion came to be regarded as a rather routine matter. Now that computers enable one to extract highly valuable information from large sets of complicated equations of motion, all this has changed.
Tribology is related to friction, wear and lubrication of machine elements. Tribology not only deals with the design of fluid containment systems like seals and gasket but also with the lubrication of surfaces in relative motion. This book comprehensively discusses the theories and applications of hydrodynamic thrust bearing, gas (air) lubricated bearing and elasto-hydrodynamic lubrication. It elucidates the concepts related to friction, including coefficient of friction, friction instability and stick-slip motion. It clarifies the misconception that harder and cleaner surfaces produce better results in wear. Recent developments, including online condition monitoring (an integration of moisture sensor, wear debris and oil quality sensors) and multigrid technique, are discussed in detail. The book also offers design problems and their real-life applications for cams, followers, gears and bearings. MATLAB programs, frequently asked questions and multiple choice questions are interspersed throughout for easy understanding of the topics.
The problem of pricing arithmetic Asian options is nontrivial, and has attracted much interest over the last two decades. This paper provides a method for calculating bounds on option prices and approximations to option deltas in a market where the underlying asset follows a geometric Lévy process. The core idea is to find a highly correlated, yet more tractable proxy to the event that the option finishes in-the-money. The paper provides a means for calculating the joint characteristic function of the underlying asset and proxy processes, and relies on Fourier methods to compute prices and deltas. Numerical studies show that the lower bound provides accurate approximations to prices and deltas, while the upper bound provides good though less accurate results.
The local volatility model is a well-known extension of the Black–Scholes constant volatility model, whereby the volatility is dependent on both time and the underlying asset. This model can be calibrated to provide a perfect fit to a wide range of implied volatility surfaces. The model is easy to calibrate and still very popular in foreign exchange option trading. In this paper, we address a question of validation of the local volatility model. Different stochastic models for the underlying asset can be calibrated to provide a good fit to the current market data, which should be recalibrated every trading date. A good fit to the current market data does not imply that the model is appropriate, and historical backtesting should be performed for validation purposes. We study delta hedging errors under the local volatility model using historical data from 2005 to 2011 for the AUD/USDimplied volatility. We performed backtests for a range of option maturities and strikes using sticky delta and theoretically correct delta hedging. The results show that delta hedging errors under the standard Black–Scholes model are no worse than those of the local volatility model. Moreover, for the case of in- and at-the-money options, the hedging error for the Black–Scholes model is significantly better.
We discuss simulation of sensitivities or Greeks of multi-asset European style options under a special Lévy process model: that is, the subordinated Brownian motion model. The Malliavin calculus method combined with Monte Carlo and quasi-Monte Carlo methods is used in the simulations. Greeks are expressed in terms of the expectations of the option payoff functions multiplied by the weights involving Malliavin derivatives for multi-asset options. Numerical results show that the Malliavin calculus method is usually more efficient than the finite difference method for options with nonsmooth payoffs. The superiority of the former method over the latter is even more significant when both are combined with quasi-Monte Carlo methods.
We study the optimal proportional reinsurance and investment problem in a general jump-diffusion financial market. Assuming that the insurer’s surplus process follows a jump-diffusion process, the insurer can purchase proportional reinsurance from the reinsurer and invest in a risk-free asset and a risky asset, whose price is modelled by a general jump-diffusion process. The insurance company wishes to maximize the expected exponential utility of the terminal wealth. By using techniques of stochastic control theory, closed-form expressions for the value function and optimal strategy are obtained. A Monte Carlo simulation is conducted to illustrate that the closed-form expressions we derived are indeed the optimal strategies, and some numerical examples are presented to analyse the impact of model parameters on the optimal strategies.