To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Asymptotic expansions of the Gauss hypergeometric function with large parameters, $F(\unicode[STIX]{x1D6FC}+\unicode[STIX]{x1D716}_{1}\unicode[STIX]{x1D70F},\unicode[STIX]{x1D6FD}+\unicode[STIX]{x1D716}_{2}\unicode[STIX]{x1D70F};\unicode[STIX]{x1D6FE}+\unicode[STIX]{x1D716}_{3}\unicode[STIX]{x1D70F};z)$ as $|\unicode[STIX]{x1D70F}|\rightarrow \infty$, are known for many special cases, but not for one that the author encountered in recent work on fluid mechanics: $\unicode[STIX]{x1D716}_{2}=0$ and $\unicode[STIX]{x1D716}_{3}=\unicode[STIX]{x1D716}_{1}z$. This paper gives the leading term for that case if $\unicode[STIX]{x1D6FD}$ is not a negative integer and $z$ is not on the branch cut $[1,\infty )$, and it shows how subsequent terms can be found.
The numerical entropy production (NEP) for shallow water equations (SWE) is discussed and implemented as a smoothness indicator. We consider SWE in three different dimensions, namely, one-dimensional, one-and-a-half-dimensional, and two-dimensional SWE. An existing numerical entropy scheme is reviewed and an alternative scheme is provided. We prove the properties of these two numerical entropy schemes relating to the entropy steady state and consistency with the entropy equality on smooth regions. Simulation results show that both schemes produce NEP with the same behaviour for detecting discontinuities of solutions and perform similarly as smoothness indicators. An implementation of the NEP for an adaptive numerical method is also demonstrated.
Options with extendable features have many applications in finance and these provide the motivation for this study. The pricing of extendable options when the underlying asset follows a geometric Brownian motion with constant volatility has appeared in the literature. In this paper, we consider holder-extendable call options when the underlying asset follows a mean-reverting stochastic volatility. The option price is expressed in integral forms which have known closed-form characteristic functions. We price these options using a fast Fourier transform, a finite difference method and Monte Carlo simulation, and we determine the efficiency and accuracy of the Fourier method in pricing holder-extendable call options for Heston parameters calibrated from the subprime crisis. We show that the fast Fourier transform reduces the computational time required to produce a range of holder-extendable call option prices by at least an order of magnitude. Numerical results also demonstrate that when the Heston correlation is negative, the Black–Scholes model under-prices in-the-money and over-prices out-of-the-money holder-extendable call options compared with the Heston model, which is analogous to the behaviour for vanilla calls.