To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Every fluid dynamicist will at some point need to use computation. Thinking about the physics, constraints and the requirements early on will be rewarded with benefits in time, effort, accuracy and expense. How these benefits can be realised is illustrated in this guide for would-be researchers and beginning graduate students to some of the standard methods and common pitfalls of computational fluid mechanics. Based on a lecture course that the author has developed over twenty years, the text is split into three parts. The quick introduction enables students to solve numerically a basic nonlinear problem by a simple method in just three hours. The follow-up part expands on all the key essentials, including discretisation (finite differences, finite elements and spectral methods), time-stepping and linear algebra. The final part is a selection of optional advanced topics, including hyperbolic equations, the representation of surfaces, the boundary integral method, the multigrid method, domain decomposition, the fast multipole method, particle methods and wavelets.
The Kirchhoff approximation is widely used to describe the scatter of elastodynamic waves. It simulates the scattered field as the convolution of the free-space Green’s tensor with the geometrical elastodynamics approximation to the total field on the scatterer surface and, therefore, cannot be used to describe nongeometrical phenomena, such as head waves. The aim of this paper is to demonstrate that an alternative approximation, the convolution of the far-field asymptotics of the Lamb’s Green’s tensor with incident surface tractions, has no such limitation. This is done by simulating the scatter of a critical Gaussian beam of transverse motions from an infinite plane. The results are of interest in ultrasonic nondestructive testing.