To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the pricing of European options under a modified Black–Scholes equation having fractional derivatives in the “spatial” (price) variable. To be specific, the underlying price is assumed to follow a geometric Koponen–Boyarchenko–Levendorski process. This pure jump Lévy process could better capture the real behaviour of market data. Despite many difficulties caused by the “globalness” of the fractional derivatives, we derive an explicit closed-form analytical solution by solving the fractional partial differential equation analytically, using the Fourier transform technique. Based on the newly derived formula, we also examine, in theory, many basic properties of the option price under the current model. On the other hand, for practical purposes, we impose a reliable implementation method for the current formula so that it can be easily used in the trading market. With the numerical results, the impact of different parameters on the option price are also investigated.
The effect of uniform wind flow on modulational instability of two crossing waves is studied here. This is an extension of an earlier work to the case of a finite-depth water body. Evolution equations are obtained as a set of three coupled nonlinear equations correct up to third order in wave steepness. Figures presented in this paper display the variation in the growth rate of instability of a pair of obliquely interacting uniform wave trains with respect to the changes in the air-flow velocity, depth of water medium and the angle between the directions of propagation of the two wave packets. We observe that the growth rate of instability increases with the increase in the wind velocity and the depth of water medium. It also increases with the decrease in the angle of interaction of the two wave systems.
We focus on the convergence rate of the alternating direction method of multipliers (ADMM) in a complex domain. First, the complex form of variational inequality (VI) is established by using the Wirtinger calculus technique. Second, the $O(1/K)$ convergence rate of the ADMM in a complex domain is provided. Third, the ADMM in a complex domain is applied to the least absolute shrinkage and selectionator operator (LASSO). Finally, numerical simulations are provided to show that ADMM in a complex domain has the $O(1/K)$ convergence rate and that it has certain advantages compared with the ADMM in a real domain.
This is an introduction to the dynamics of fluids at small scales, the physical and mathematical underpinnings of Brownian motion, and the application of these subjects to the dynamics and flow of complex fluids such as colloidal suspensions and polymer solutions. It brings together continuum mechanics, statistical mechanics, polymer and colloid science, and various branches of applied mathematics, in a self-contained and integrated treatment that provides a foundation for understanding complex fluids, with a strong emphasis on fluid dynamics. Students and researchers will find that this book is extensively cross-referenced to illustrate connections between different aspects of the field. Its focus on fundamental principles and theoretical approaches provides the necessary groundwork for research in the dynamics of flowing complex fluids.