To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Drawing from a wide variety of mathematical subjects, this book aims to show how mathematics is realised in practice in the everyday world. Dozens of applications are used to show that applied mathematics is much more than a series of academic calculations. Mathematical topics covered include distributions, ordinary and partial differential equations, and asymptotic methods as well as basics of modelling. The range of applications is similarly varied, from the modelling of hair to piano tuning, egg incubation and traffic flow. The style is informal but not superficial. In addition, the text is supplemented by a large number of exercises and sideline discussions, assisting the reader's grasp of the material. Used either in the classroom by upper-undergraduate students, or as extra reading for any applied mathematician, this book illustrates how the reader's knowledge can be used to describe the world around them.
A complete introduction to partial differential equations, this textbook provides a rigorous yet accessible guide to students in mathematics, physics and engineering. The presentation is lively and up to date, paying particular emphasis to developing an appreciation of underlying mathematical theory. Beginning with basic definitions, properties and derivations of some basic equations of mathematical physics from basic principles, the book studies first order equations, classification of second order equations, and the one-dimensional wave equation. Two chapters are devoted to the separation of variables, whilst others concentrate on a wide range of topics including elliptic theory, Green's functions, variational and numerical methods. A rich collection of worked examples and exercises accompany the text, along with a large number of illustrations and graphs to provide insight into the numerical examples. Solutions to selected exercises are included for students whilst extended solution sets are available to lecturers from solutions@cambridge.org.
Complex variables provide powerful methods for attacking problems that can be very difficult to solve in any other way, and it is the aim of this book to provide a thorough grounding in these methods and their application. Part I of this text provides an introduction to the subject, including analytic functions, integration, series, and residue calculus and also includes transform methods, ODEs in the complex plane, and numerical methods. Part II contains conformal mappings, asymptotic expansions, and the study of Riemann–Hilbert problems. The authors provide an extensive array of applications, illustrative examples and homework exercises. This 2003 edition was improved throughout and is ideal for use in undergraduate and introductory graduate level courses in complex variables.
We prove the discrete compactness property of the edge elements of any order on a classof anisotropically refined meshes on polyhedral domains. The meshes, made up oftetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl.Sci. 21 (1998) 519–549]. They are appropriately graded nearsingular corners and edges of the polyhedron.
We prove error estimates for the ultra weak variational formulation (UWVF) in 3D linearelasticity. We show that the UWVF of Navier’s equation can be derived as an upwinddiscontinuous Galerkin method. Using this observation, error estimates are investigatedapplying techniques from the theory of discontinuous Galerkin methods. In particular, wederive a basic error estimate for the UWVF in a discontinuous Galerkin type norm and thenan error estimate in the L2(Ω) norm in terms of the bestapproximation error. Our final result is an L2(Ω) norm errorestimate using approximation properties of plane waves to give an estimate for the orderof convergence. Numerical examples are presented.
In earlier work we have studied a method for discretization in time of a parabolic problem, which consists of representing the exact solution as an integral in the complex plane and then applying a quadrature formula to this integral. In application to a spatially semidiscrete finite-element version of the parabolic problem, at each quadrature point one then needs to solve a linear algebraic system having a positive-definite matrix with a complex shift. We study iterative methods for such systems, considering the basic and preconditioned versions of first the Richardson algorithm and then a conjugate gradient method.
This classic book is a encylopaedic and comprehensive account of the classical theory of analytical dynamics. The treatment is rigorous yet readable, starting from first principles with kinematics before moving to equations of motion and specific and explicit methods for solving them, with chapters devoted to particle dyanmics, rigid bodies, vibration, and dissipative systems. Hamilton's principle is introduced and then applied to dynamical systems, including three-body systems and celestial mechanics. Very many examples and exercisies are supplied throughout.
Within both the social and environmental sciences, much of the data collected is within a spatial context and requires statistical analysis for interpretation. The purpose of this book is to describe current methods for the analysis of spatial data. Methods described include data description, map interpolation, and exploratory and explanatory analyses. The book also examines spatial referencing, and methods for detecting problems, assessing their seriousness and taking appropriate action are discussed. This is an important text for any discipline requiring a broad overview of current theoretical and applied work for the analysis of spatial data sets. It will be of particular use to research workers and final year undergraduates in the fields of geography, environmental sciences and social sciences.
The sphere is what might be called a perfect shape. Unfortunately nature is imperfect and many bodies are better represented by an ellipsoid. The theory of ellipsoidal harmonics, originated in the nineteenth century, could only be seriously applied with the kind of computational power available in recent years. This, therefore, is the first book devoted to ellipsoidal harmonics. Topics are drawn from geometry, physics, biosciences and inverse problems. It contains classical results as well as new material, including ellipsoidal bi-harmonic functions, the theory of images in ellipsoidal geometry and vector surface ellipsoidal harmonics, which exhibit an interesting analytical structure. Extended appendices provide everything one needs to solve formally boundary value problems. End-of-chapter problems complement the theory and test the reader's understanding. The book serves as a comprehensive reference for applied mathematicians, physicists, engineers and for anyone who needs to know the current state of the art in this fascinating subject.
A new approach for computationally efficient estimation of stability factors forparametric partial differential equations is presented. The general parametric bilinearform of the problem is approximated by two affinely parametrized bilinear forms atdifferent levels of accuracy (after an empirical interpolation procedure). The successiveconstraint method is applied on the coarse level to obtain a lower bound for the stabilityfactors, and this bound is extended to the fine level by adding a proper correction term.Because the approximate problems are affine, an efficient offline/online computationalscheme can be developed for the certified solution (error bounds and stability factors) ofthe parametric equations considered. We experiment with different correction terms suitedfor a posteriori error estimation of the reduced basis solution ofelliptic coercive and noncoercive problems.
From Kantorovich’s theory we present a semilocal convergence result for Newton’s methodwhich is based mainly on a modification of the condition required to the second derivativeof the operator involved. In particular, instead of requiring that the second derivativeis bounded, we demand that it is centered. As a consequence, we obtain a modification ofthe starting points for Newton’s method. We illustrate this study with applications tononlinear integral equations of mixed Hammerstein type.
The surface Cauchy–Born (SCB) method is a computational multi-scale method for the simulation of surface-dominated crystalline materials. We present an error analysis of the SCB method, focused on the role of surface relaxation. In a linearized 1D model we show that the error committed by the SCB method is 𝒪(1) in the mesh size; however, we are able to identify an alternative “approximation parameter” – the stiffness of the interaction potential – with respect to which the relative error in the mean strain is exponentially small. Our analysis naturally suggests an improvement of the SCB model by enforcing atomistic mesh spacing in the normal direction at the free boundary. In this case we even obtain pointwise error estimates for the strain.
We consider the Laplace equation posed in a three-dimensional axisymmetric domain. Wereduce the original problem by a Fourier expansion in the angular variable to a countablefamily of two-dimensional problems. We decompose the meridian domain, assumed polygonal,in a finite number of rectangles and we discretize by a spectral method. Then we describethe main features of the mortar method and use the algorithm Strang Fix to improve theaccuracy of our discretization.
The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-typeapproximate Riemann solver for a hyperbolic nonconservative PDE system arising in aturbidity current model. The main difficulties come from the nonconservative nature of thesystem. A general strategy to derive simple approximate Riemann solvers fornonconservative systems is introduced, which is applied to the turbidity current model toobtain two different HLLC solvers. Some results concerning the non-negativity preservingproperty of the corresponding numerical methods are presented. The numerical resultsprovided by the two HLLC solvers are compared between them and also with those obtainedwith a Roe-type method in a number of 1d and 2d test problems. This comparison shows that,while the quality of the numerical solutions is comparable, the computational cost of theHLLC solvers is lower, as only some partial information of the eigenstructure of thematrix system is needed.
For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.
In this paper we analyze the consistency, the accuracy and some entropy properties ofparticle methods with remeshing in the case of a scalar one-dimensional conservation law.As in [G.-H. Cottet and L. Weynans, C. R. Acad. Sci. Paris, Ser. I343 (2006) 51–56] we re-write particle methods with remeshing inthe finite-difference formalism. This allows us to prove the consistency of these methods,and accuracy properties related to the accuracy of interpolation kernels. Cottet and Magnidevised recently in [G.-H. Cottet and A. Magni, C. R. Acad. Sci. Paris, Ser. I347 (2009) 1367–1372] and [A. Magni and G.-H. Cottet, J.Comput. Phys. 231 (2012) 152–172] TVD remeshing schemes forparticle methods. We extend these results to the nonlinear case with arbitrary velocitysign. We present numerical results obtained with these new TVD particle methods for theEuler equations in the case of the Sod shock tube. Then we prove that with these new TVDremeshing schemes the particle methods converge toward the entropy solution of the scalarconservation law.
Searching for the optimal partitioning of a domain leads to the use of the adjoint methodin topological asymptotic expansions to know the influence of a domain perturbation on acost function. Our approach works by restricting to local subproblems containing theperturbation and outperforms the adjoint method by providing approximations of higherorder. It is a universal tool, easily adapted to different kinds of real problems and doesnot need the fundamental solution of the problem; furthermore our approach allows toconsider finite perturbations and not infinitesimal ones. This paper provides theoreticaljustifications in the linear case and presents some applications with topologicalperturbations, continuous perturbations and mesh perturbations. This proposed approach canalso be used to update the solution of singularly perturbed problems.
Since the ellipsoidal geometry governs natural processes which exhibit directional differentiation, it is obvious that many real-life problems have to be formulated in the framework of the ellipsoidal coordinate system. Furthermore, many problems of scientific and technological interest are postulated as boundary value problems in ellipsoidal domains. Consequently, it is very important to develop systematic techniques to handle these types of problems. Solving boundary value problems in an ellipsoidal environment is much harder than solving problems in a spherical one, and in many instances it is impossible to obtain an analytic solution in closed form. The difficulty with these problems is mainly due to the analytic computational part and not to the understanding of the underlying theory. Today, we do understand the fundamental structure of the theory of ellipsoidal harmonics, and some simple model problems can be solved exactly. These solutions offer a lot of mathematical and physical insight into many problems with anisotropic behavior. Combining these model solutions with the corresponding theory allows us to obtain enough information for the construction of effective hybrid methods, where the computational part can be left to programs of numerical or symbolic computations.
In the present chapter we collect the known basic tools needed to solve boundary value problems in fundamental domains with ellipsoidal boundaries. The fundamental solution of the Laplacian is a core topic in this chapter. One of the standard references for Green's functions is [28] as well as [59, 60, 266, 267].