To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Explicit generators are found for the group G2 of automorphisms of the algebra of one-sided inverses of a polynomial algebra in two variables over a field. Moreover, it is proved that
where S2 is the symmetric group, is the 2-dimensional algebraic torus, E∞() is the subgroup of GL∞() generated by the elementary matrices. In the proof, we use and prove several results on the index of an operator. The final argument is the proof of the fact that K1() ≃ K*. The algebras and are noncommutative, non-Noetherian, and not domains.
We define a hyperplane group to be a finite group generated by reflections fixing a single hyperplane pointwise. Landweber and Stong proved that the invariant ring of a hyperplane group is again a polynomial ring in any characteristic. Recently, Hartmann and Shepler gave a constructive proof of this result. By their algorithm, one can always construct generators that are additive. In this paper, we study hyperplane groups of order a power of a prime p in characteristic p and give a slightly different construction of the generators than Hartmann and Shepler. We then show that such generators have a particular form. Furthermore, we show that if the group is defined by a finite additive subgroup W ⊆ , the vanishing ideal of W is generated by polynomials obtained from a set of generators of the invariant ring that are additive. Finally, we give a shorter proof of the fact that the module of the invariant differential 1-forms is free in our situation.
An endomorphism φ of a polynomial ring is said to preserve outer rank if φ sends each polynomial to one with the same outer rank. For the polynomial ring in two variables over a field of characteristic 0 we prove that an endomorphism φ preserving outer rank is an automorphism if one of the following conditions holds: (1) the Jacobian of φ is a nonzero constant; (2) the image of φ contains a coordinate; (3) φ has a ‘fixed point’.
The Nagata automorphism is a kind of complicated automorphism on the affine 3-space . For a long time, it remained unknown whether or not the Nagata automorphism is tame until Shestakov and Umirbaev at last proved that it is not tame in 2004, by purely algebraic methods (e.g. Poisson algebra). In this paper, we consider a certain necessary condition for a given automorphism on to be tame from the point of view of the Sarkisov program established by Corti. Furthermore, by using it, we shall give a new algebro-geometric proof of the non-tameness of the Nagata automorphism.