We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Kasparov groups are extended to the setting of inverse limits of G-C*-algebras, where G is assumed to be a locally compact group. The K K-product and other important features of the theory are generalized to this setting.
A method for computing the number of contours for a twistor diagram, using Grothendieck's algebraic de Rham theorem, is described and some examples are given.
The main result proved in this paper is the following. Suppose X1, X2 are two subspaces of a space X such that X = Int(X1)∪ X2 = X1 ∪ Int(X2). Then the pair (X1, X2) is a ϕ on X. This result settles an open question and includes all known results on ϕ-excisiveness in sheaf cohomology as its special cases. We construct several several examples to illustrate our main theorem and to show that it is, in fact, quite sharp.
We give an explicit construction of a continuous trace C*algebra with prescribed Dixmier-Douady class, and with only finite-dimensional irreducible representations. These algebras often have non-trivial automorphisms, and we show how a recent description of the outer automorphism group of a stable continuous trace C*algebra follows easily from our main result. Since our motivation came from work on a new notion of central separable algebras, we explore the connections between this purely algebraic subject and C*a1gebras.
We prove that for a non-discrete space X, the inequality DimL(X) ≥ dimL(X) + 1 always holds if (i) X is paracompact and each point is Gδ, or (ii) X is a completely paracompact Morita k-space. Consequently, if X is a non-discrete completely paracompact space in which each point is a Gδ-set or it is also a Morita k-space then, the equality DimL(X) = dimL(X) + 1 always holds. We apply this equality to show that for such a space X there exists a point x ∈ X and a family ϕ of supports on X such that {x} is not ϕ-taut with respect to sheaf cohomology. This generalizes a corresponding known result for Rn. We also discuss the usual sum theorems for this large cohomological dimension; the finite sum theorem for closed sets is proved, and for all others, counter examples are given. Subject to a small modification, however, all of the sum theorems hold for a large class of spaces.