To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Inexact Uzawa algorithms for solving nonlinear saddle-point problems are proposed. A simple sufficient condition for the convergence of the inexact Uzawa algorithms is obtained. Numerical experiments show that the inexact Uzawa algorithms are convergent.
The successive over-relaxation (SOR) iteration method for solving linear systems of equations depends upon a relaxation parameter. A well-known theory for determining this parameter was given by Young for consistently ordered matrices. In this paper, for the three-dimensional Laplacian, we introduce several compact difference schemes and analyse the block-SOR method for the resulting linear systems. Their optimum relaxation parameters are given for the first time. Analysis shows that the value of the optimum relaxation parameter of block-SOR iteration is very sensitive for compact stencils when solving the three-dimensional Laplacian. This paper provides a theoretical solution for determining the optimum relaxation parameter in real applications.
For any bounded linear operator A in a Banach space, two generalized condition numbers, k(A) and k(A) are defined in this paper. These condition numbers may be applied to the perturbation analysis for the solution of ill-posed differential equations and bounded linear operator equations in infinite dimensional Banach spaces. Different expressions for the two generalized condition numbers are discussed in this paper and applied to the perturbation analysis of the operator equation.
For two given projections p and q in a C*-algebra, we investigate how to express the Drazin inverses of the product pq and the difference p−q, and give applications. As a special case, we obtain the results of [C. Y. Deng, ‘The Drazin inverses of products and differences of orthogonal projections’, J. Math. Anal. Appl.335 (2007) 64–71], with considerably simpler proofs.
We investigate the perturbation of the palindromic eigenvalue problem for the matrix quadratic with A0,A1∈𝒞n×n and (where or H). The perturbation of eigenvalues in the context of general matrix polynomials, palindromic pencils, (semi-Schur) anti-triangular canonical forms and differentiation is discussed.
In this paper we derive perturbation theorems for the LU and QR factors. Moreover, bounds for κL(A)/κL′(A) and κU(A)/κ′U(A) are given for the LU factorization of a nonsingular matrix. By applying pivoting strategies in the LU factorization, estimates for κL(PAQ)/κL′(PAQ) and κU(PAQ)/κ′U(PAQ) are also obtained.
In this paper, we study Markov fluid queues where the net fluid rate to a single-buffer system varies with respect to the state of an underlying continuous-time Markov chain. We present a novel algorithmic approach to solve numerically for the steady-state solution of such queues. Using this approach, both infinite- and finite-buffer cases are studied. We show that the solution of the infinite-buffer case is reduced to the solution of a generalized spectral divide-and-conquer (SDC) problem applied on a certain matrix pencil. Moreover, this SDC problem does not require the individual computation of any eigenvalues and eigenvectors. Via the solution for the SDC problem, a matrix-exponential representation for the steady-state queue-length distribution is obtained. The finite-buffer case, on the other hand, requires a similar but different decomposition, the so-called additive decomposition (AD). Using the AD, we obtain a modified matrix-exponential representation for the steady-state queue-length distribution. The proposed approach for the finite-buffer case is shown not to have the numerical stability problems reported in the literature.