To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the infinitesimal variations of Hodge structure arising in a number of geometric situations are non-generic. In particular, we consider the case of generic hypersurfaces in complete smooth projective toric varieties, generic hypersurfaces in weighted projective spaces and generic complete intersections in projective space and show that, for sufficiently high degrees, the corresponding infinitesimal variations are non-generic.
Let S be a Riemann surface of finite type. Let ω be a pseudo-Anosov map of S that is obtained from Dehn twists along two families {A,B} of simple closed geodesics that fill S. Then ω can be realized as an extremal Teichmüller mapping on a surface of the same type (also denoted by S). Let ϕ be the corresponding holomorphic quadratic differential on S. We show that under certain conditions all possible nonpuncture zeros of ϕ stay away from all closures of once punctured disk components of S∖{A,B}, and the closure of each disk component of S∖{A,B} contains at most one zero of ϕ. As a consequence, we show that the number of distinct zeros and poles of ϕ is less than or equal to the number of components of S∖{A,B}.