To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Chapter 2, we introduced the concept of a numerical integrator as a mapping which approximates the flow-map of a given system of differential equations. We have also seen a few instances of how such integrators behave, demonstrating concepts such as convergence and order of accuracy. We observed that the typical picture is a locally accurate approximation that gradually drifts further from the true trajectory (see Fig. 2.3, Fig. 2.5 and the left panel of Fig. 2.7); the rate of drift can be reduced by reducing the stepsize (and thereby also increasing the amount of computational work), but the qualitative picture does not change in any significant way.
What stands out as remarkable, therefore, is the behavior, illustrated in the right panel of Fig. 2.7, of the Euler-B method, which retains bounded trajectories when applied to the harmonic oscillator. In Chapter 2, we provided an explanation for this in the form of a linear stability analysis showing that certain methods, including Störmer–Verlet and Euler-B, have eigenvalues on the unit circle when applied to the harmonic oscillator (or any other oscillatory linear system), if the stepsize is below some threshold value. The Euler-B and Störmer-Verlet methods (among others) possess a strong asymptotic stability property for linear systems.
It is interesting to note that a related long-term stability property extends to nonlinear models. If we apply, for example, the Störmer–Verlet methods to the Lennard-Jones oscillator, we obtain the results illustrated in Fig. 4.1 (compare with Fig. 2.3 and Fig. 2.5).
In Chapter 4, we introduced several first- and second-order symplectic integration methods for Hamiltonian systems. In this chapter, we will discuss the construction of “higher-order” symplectic methods (with order greater than two), focusing in particular on those types of schemes that have been found to be most useful for practical computations. In traditional practice, higher-order integrators are employed for solving problems with relatively smooth solutions, such as gravitational simulations (solar system simulations, satellite trajectories). They are also traditionally used for many types of computations when very high accuracy (for example near the rounding error of the computer) is desired.
As we have seen in Chapter 2, the appropriateness of a given numerical method for a given computational task is a complicated issue. In some cases, the principles of geometric integration are in contradiction with the demand for high accuracy. If the purpose of simulation is to reconstruct, as exactly as possible, a particular trajectory segment, it may not matter what sort of qualitative features the integrator possesses: the efficiency of the integration method in terms of solution error per unit work is instead of paramount importance. Since the development of symplectic integrators adds a number of additional constraints on the design of the method, such schemes typically sacrifice something in efficiency compared with their nonsymplectic counterparts at similar accuracy, for example requiring an extra force evaluation or two at each timestep. Thus the problem of correctly determining the precise entry point and time instant that a space probe arrives at the Martian atmosphere is a task best handled by a standard integration method, for example, a high-order multistep integrator (for example, Diva) or explicit Runge–Kutta method (for example, RKSUITE).
In this chapter, we discuss formulation issues and symplectic integration methods for simulating the motion of a rigid body. Rigid bodies arise frequently in engineering, chemistry, and physics. For example, they occur in molecular simulation when the flexibility of small polyatomic units such as the water molecule, or CH4 is ignored. Cogwheels, space vehicles, and the planets are some other objects that are commonly modeled by rigid bodies.
Even in the absence of external applied forces, any rigid body more complicated than a uniform sphere will exhibit complicated motion, as defined by the moments of inertia of the body. A hint of the potential complexity of the motion is provided by the classic illustration using a hardbound book, which typically has three unequal moments of inertia I1 < I2 < I3 with I1 corresponding to an axis drawn along the binding, I2 to an axis across the cover, and I3 to an axis through the pages of the book (see Fig. 8.1). As the book is tossed up and spinning around each of the axes, the following dynamics are observed: around the first and third axes, the motion combines a stable periodic rotation with the rising and falling motion due to gravity, whereas the rotation with respect to the middle axis is much more complicated. (See, for example, for more explanation.) (It helps to place a rubber band around the book's cover to keep it closed while conducting experiments.)
Developing a method to simulate general rigid body motions, especially for long-term integration, proves an interesting and challenging task. The first issue we must confront is the selection of a set of coordinates that describe body orientation and spatial position.
This book is about simulating dynamical systems, especially conservative systems such as arise in celestial mechanics and molecular models. We think of the integrator as the beating heart of any dynamical simulation, the scheme which replaces a differential equation in continuous time by a difference equation defining approximate snapshots of the solution at discrete timesteps. As computers grow in power, approximate solutions are computed over ever-longer time intervals, and the integrator may be iterated many millions or even billions of times; in such cases, the qualitative properties of the integrator itself can become critical to the success of a simulation. Geometric integrators are methods that exactly (i.e. up to rounding errors) conserve qualitative properties associated to the solutions of the dynamical system under study.
The increase in the use of simulation in applications has mirrored rising interest in the theory of dynamical systems. Many of the recent developments in mathematics have followed from the appreciation of the fundamentally chaotic nature of physical systems, a consequence of nonlinearities present in even the simplest useful models. In a chaotic system the individual trajectories are by definition inherently unpredictable in the exact sense: solutions depend sensitively on the initial data. In some ways, this observation has limited the scope and usefulness of results obtainable from mathematical theory. Most of the common techniques rely on local approximation and perturbation expansions, methods best suited for understanding problems which are “almost linear,” while the new mathematics that would be needed to answer even the most basic questions regarding chaotic systems is still in its infancy.
We have seen in the previous chapter that integrators preserving symplectic structure and/or first integrals can often be constructed in a straightforward way. In this chapter, we consider the properties of those methods and the implications for long-term simulations.
The traditional approach of numerical analysis generally assumes that the purpose of simulation is the faithful reproduction of a particular solution or trajectory, but individual trajectories typically are not of primary interest in most modern, scientific research; rather, the scientist typically treats the trajectory as a particular realization of a fundamentally stochastic evolution modelling in some way the myriad undetermined perturbations present in a “real-world” environment. It was the important discovery of Lorenz that differential equations can exhibit a chaotic solution behavior that includes an essentially stochastic or “random” component. The scientist views the model being analyzed as representative of a class of nearby models based on parameters which are typically only empirically (and approximately) determined. Furthermore, exact initial conditions are also typically not available. Some classical examples of such a scenario are molecular dynamics and numerical weather prediction.
It is now apparent that most modern large-scale simulations are conducted with timesteps and time intervals such that the numerical solution cannot be thought of as close to any particular model solution. The purpose of wedding the development of integrators to the standard axiomatic principle of timestepping – that one is attempting to approximate a particular trajectory – is thus called into question. Although high accuracy often is not needed in nonlinear dynamics computations, we must recognize certain important constraints imposed by the laws of nature.
We describe a constructive algorithm for obtaining smoothsolutions of a nonlinear, nonhyperbolic pair of balance lawsmodeling incompressible two-phase flow in one space dimension andtime. Solutions are found as stationary solutions of a relatedhyperbolic system, based on the introduction of an artificial timevariable.As may be expected for such nonhyperbolic systems, in general thesolutions obtained do not satisfy both components of the giveninitial data. This deficiency may be overcome, however, byintroducing an alternative “solution" satisfying both componentsof the initial data and an approximate form of a correspondinglinearized system.
In this paper, we extend the reduced-basis methods and associated a posteriori error estimators developed earlier for elliptic partial differential equations to parabolic problems with affine parameter dependence. The essential new ingredient is the presence of time in the formulation and solution of the problem – we shall “simply” treat time as an additional, albeit special, parameter. First, we introduce the reduced-basis recipe – Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter-time space – and develop a new greedy adaptive procedure to “optimally” construct the parameter-time sample set. Second, we propose error estimation and adjoint procedures that provide rigorous and sharp bounds for the error in specific outputs of interest: the estimates serve a priori to construct our samples, and a posteriori to confirm fidelity. Third, based on the assumption of affine parameter dependence, we develop offline-online computational procedures: in the offline stage, we generate the reduced-basis space; in the online stage, given a new parameter value, we calculate the reduced-basis output and associated error bound. The operation count for the online stage depends only on N (typically small) and the parametric complexity of the problem; the method is thus ideally suited for repeated, rapid, reliable evaluation of input-output relationships in the many-query or real-time contexts.
On exhibe dans cette note une paramétrix (au sens faible) de l'opérateur sous-jacent à l'équation CFIE de l'électromagnétisme. L'intérêt de cetteparamétrix est de se prêter à différentes stratégies de discrétisationet ainsi de pouvoir être utilisée comme préconditionneur de la CFIE.On montre aussi que l'opérateur sous-jacent à la CFIE satisfait une conditionInf-Sup discrète uniforme, applicable aux espaces de discrétisation usuellement rencontrésen électromagnétisme, et qui permet d'établir un résultat inédit de convergencenumérique de la CFIE.
We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of theHelmholtz equation,$\frac{ {\rm e}^{i |\vec{u}-\vec{v}|}}{4 \pi i |\vec{u}-\vec{v}|}$,which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices $\ell \le L$. We prove that if $v = |\vec{v}|$ is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies $L+\frac{1}{2} \simeq v + CW^{\frac{2}{3}}(K(\alpha) \epsilon^{-\delta} v^\gamma )\, v^{\frac{1}{3}}$ where W is the Lambert function,$K(\alpha)$ depends only on $\alpha=\frac{|\vec{u}|}{|\vec{v}|}$ and $C\,,\delta, \, \gamma$ are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results are useful to provide sharp estimates of the error in the fast multipole method for scattering computation.
A simple dynamical problem involving unilateral contact and dry friction of Coulomb type is considered as an archetype. We are concerned with the existence and uniqueness of solutions of the system with Cauchy data. In the frictionless case, it is known [Schatzman, Nonlinear Anal. Theory, Methods Appl.2 (1978) 355–373] that pathologies of non-uniqueness can exist, even if all the data are of class C∞. However, uniqueness is recovered provided that the data are analytic [Ballard, Arch. Rational Mech. Anal.154 (2000) 199–274]. Under this analyticity hypothesis, we prove theexistence and uniqueness of solutions for the dynamical problem with unilateral contact and Coulomb friction, extending [Ballard, Arch. Rational Mech. Anal.154 (2000) 199–274] to the case where Coulomb friction is added to unilateral contact.
In this paper, we propose a new numerical method for solvingelliptic equations in unbounded regions of ${\mathbb{R}}^n$. Themethod is based on the mapping of a part of the domain into abounded region. An appropriate family of weighted spaces is usedfor describing the growth or the decay of functions at large distances. Afterexposing the main ideas of the method, we analysecarefully its convergence. Some 3D computational results are displayedto demonstrate its efficiency and its high performance.
In order to handle the flow of a viscous incompressible fluid in a porous medium with cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy equations in the medium with the Stokes equations in the cracks by a new boundary condition at the interface, namely the continuity of the pressure. We prove that this model admits a unique solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite element discretization and derive a priori and a posteriori error estimates. We present some numerical experiments that are in good agreement with the analysis.
In this paper we investigate the motion of a rigid ball in anincompressible perfect fluid occupying ${\mathbb R}^2$.We prove the global in time existence and the uniqueness ofthe classical solution for this fluid-structure problem. The proof reliesmainly on weighted estimates for the vorticity associated withthe strong solution of a fluid-structure problemobtained by incorporating some dissipation.