To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The GRP method was developed (Chapter 5) for compressible, unsteady flow in a duct of varying cross section. In the case of a planar two-dimensional duct, the quasi-1-D formulation is taken to be a reasonable approximation of the actual (2-D) flow. In this chapter we study a duct flow where an incident wave interacts with a short converging segment, producing interesting wave structures. An illustrative case is that of a rarefaction wave propagating through a “converging corridor,” producing (at later times) a complex “reflected” wave pattern. Such a case is studied (numerically) in this chapter, using (a) the quasi-1-D approach of Chapter 5 and (b) the full two-dimensional computation as described in Section 8.3 (with the duct contour taken as a stationary boundary). The comparison between the two computations reveals some bounds of validity of the quasi-1-D approximation. We conclude the chapter by listing (Remark 10.1) several articles describing the application of the GRP to diverse fluid-dynamical problems, including well-known test cases, shock wave reflection phenomena compared to experimental observation, and even a case where a “moving boundary” experiment is favorably compared to the corresponding GRP solution.
Consider a centered rarefaction wave that propagates in a planar duct comprising two long segments of uniform cross-sectional area joined by a smooth converging nozzle.
This paper is concerned with the asymptotic behavior of thefinite difference solutions of a class of nonlinear reaction diffusion equations with time delay. By introducing a pair of coupled upper and lower solutions, an existence result of the solution is given and an attractor of the solution is obtained without monotonicity assumptions on the nonlinear reaction function. This attractor is a sector between two coupled quasi-solutions of the corresponding “steady-state" problem, which are obtained froma monotone iteration process. A sufficient condition, ensuring that two coupled quasi-solutions coincide, is given. Also given is the application to a nonlinear reaction diffusion problem with time delay for three different types of reaction functions, including some numerical results which validate the theoretical analysis.
We present a Gause type predator–prey model incorporating delay due to response of prey population growth to density and gestation. The functional response of predator is assumed to be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient criterion for uniform persistence is derived. Conditions are found out for which system undergoes a Hopf–bifurcation.
We recently derived a very general representation formulafor the boundary voltage perturbations caused by internalconductivity inhomogeneities of low volume fraction (cf. Capdeboscq and Vogelius (2003)). In this paper we show how thisrepresentation formula may be used to obtain veryaccurate estimates for the size of the inhomogeneitiesin terms of multiple boundary measurements. As demonstrated by our computational experiments, these estimates are significantly better than previously known (single measurement) estimates,even for moderate volume fractions.
We introduce a finite volume scheme for multi-dimensional drift-diffusion equations. Such equations arise from the theory of semiconductors and are composed of two continuity equations coupled with a Poisson equation. In the case that the continuity equations are non degenerate, we prove the convergence of the scheme and then the existence of solutions to the problem. The key point of the proof relies on the construction of an approximate gradient of the electric potential which allows us to deal with coupled terms in the continuity equations. Finally, a numerical example is given to show the efficiency of the scheme.
In this paper we show how abstract physical requirements are enoughto characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.
In this paper, we consider a 2D mathematical modelling of the verticalcompaction effect in a water saturated sedimentary basin. This model isdescribed by the usual conservation laws, Darcy's law, the porosity as afunction of the vertical component of the effective stress and theKozeny-Carman tensor, taking into account fracturation effects. This modelleads to study the time discretization of a nonlinear system ofpartial differential equations. The existence is obtained by a fixed-pointargument. The uniqueness proof, by Holmgren's method, leads to work out a linear, strongly coupled, system of partial differential equations andboundary conditions.
The aim of this paper is to present a finite volume kinetic method to compute the transport of a passive pollutant by a flow modeled by the shallow water equations using a new time discretization that allows large time steps for the pollutant computation. For the hydrodynamic part the kinetic solver ensures – even in the case of a non flat bottom – the preservation of the steady state of a lake at rest, the non-negativity of the water height and the existence of an entropy inequality. On an other hand the transport computation ensures the conservation of pollutant mass, a non-negativity property and a maximum principle for the concentration of pollutant and the preservation of discrete steady states associated with the lake at rest equilibrium. The interest of the developed method is to preserve these theoretical properties with a scheme that allows to disconnect the hydrodynamic time step – related to a classical CFL condition – and the transport one – related to a new CFL condition – and further the hydrodynamic calculation and the transport one. The CPU time is very reduced and we can easily solve different transport problems with the same hydrodynamic solution without large storage. Moreover the numerical results exhibit a better accuracy than with a classical method especially when using 1D or 2D regular grids.
We study in this paper the electromagnetic field generated in aconductor by an alternating current density. The resultinginterface problem (see Bossavit (1993)) between the metal and thedielectric medium is treated by a mixed–FEM and BEM couplingmethod. We prove that our BEM-FEM formulation is well posed andthat it leads to a convergent Galerkin method.
In this note, we propose and analyse a method for handlinginterfaces between non-matching grids based on an approachsuggested by Nitsche (1971) for the approximation ofDirichlet boundary conditions. The exposition is limited toself-adjoint elliptic problems, using Poisson's equation as amodel. A priori and a posteriori error estimates are given. Somenumerical results are included.
The present paper deals with a finite element approximation of partial differential equations when the domain is decomposed into sub-domains which are meshed independently. The method we obtain is never conforming because the continuity constraints on the boundary of the sub-domains are not imposed strongly but only penalized. We derive a selection rule for the penalty parameter which ensures a quasi-optimal convergence.
We consider the inverse problem of determining a crack submitted to a non linear impedance law. Identifiability and local Lipschitz stability results are proved for both the crack and the impedance.
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
This paper gives a review of integration algorithms for finite dimensional mechanical systems that are based on discrete variational principles. The variational technique gives a unified treatment of many symplectic schemes, including those of higher order, as well as a natural treatment of the discrete Noether theorem. The approach also allows us to include forces, dissipation and constraints in a natural way. Amongst the many specific schemes treated as examples, the Verlet, SHAKE, RATTLE, Newmark, and the symplectic partitioned Runge–Kutta schemes are presented.
This article, a companion to the article by Philippe G. Ciarlet on the mathematical modelling of shells also in this issue of Acta Numerica, focuses on numerical issues raised by the analysis of shells.
Finite element procedures are widely used in engineering practice to analyse the behaviour of shell structures. However, the concept of ‘shell finite element’ is still somewhat fuzzy, as it may correspond to very different ideas and techniques in various actual implementations. In particular, a significant distinction can be made between shell elements that are obtained via the discretization of shell models, and shell elements – such as the general shell elements – derived from 3D formulations using some kinematic assumptions, without the use of any shell theory. Our first objective in this paper is to give a unified perspective of these two families of shell elements. This is expected to be very useful as it paves the way for further thorough mathematical analyses of shell elements. A particularly important motivation for this is the understanding and treatment of the deficiencies associated with the analysis of thin shells (among which is the locking phenomenon). We then survey these deficiencies, in the framework of the asymptotic behaviour of shell models. We conclude the article by giving some detailed guidelines to numerically assess the performance of shell finite elements when faced with these pathological phenomena, which is essential for the design of improved procedures.