To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Providing students with an in-depth account of the astrophysics of high energy phenomena in the Universe, the third edition of this well-established textbook is ideal for advanced undergraduate and beginning graduate courses in high energy astrophysics. Building on the concepts and techniques taught in standard undergraduate courses, this textbook provides the astronomical and astrophysical background for students to explore more advanced topics. Special emphasis is given to the underlying physical principles of high energy astrophysics, helping students understand the essential physics. The third edition has been completely rewritten, consolidating the previous editions into one volume. It covers the most recent discoveries in areas such as gamma-ray bursts, ultra-high energy cosmic rays and ultra-high energy gamma rays. The topics have been rearranged and streamlined to make them more applicable to a wide range of different astrophysical problems.
Packed with up-to-date astronomical data about the Solar System, our Galaxy and the wider Universe, this is a one-stop reference for astronomers of all levels. It gives the names, positions, sizes and other key facts of all the planets and their satellites; discusses the Sun in depth, from sunspots to solar eclipses; lists the dates for cometary returns, close-approach asteroids, and significant meteor showers; and includes 88 star charts, with the names, positions, magnitudes and spectra of the stars, along with key data on nebulae and clusters. Full of facts and figures, this is the only book you need to look up data about astronomy. It is destined to become the standard reference for everyone interested in astronomy.
This textbook for beginning graduate students is a general introduction to the dynamics of astrophysical fluids for students with a knowledge of basic physics at undergraduate level. No previous knowledge of fluid dynamics or astrophysics is required because the author develops all new concepts in context. The first four chapters cover classical fluids, relativistic fluids, photon fluids and plasma fluids, with many cosmic examples being included. The remaining six chapters deal with astrophysical applications: stars, stellar systems, astrophysical plasmas, cosmological applications and large scale structure of the Universe. Astrophysical fluid dynamics is a promising branch of astronomy, with wide applicability. This textbook considers the role of plasma and magnetism in planets, stars, galaxies, the interplanetary, interstellar and intergalactic media, as well as the universe at large.
This work provides a comprehensive overview of our theoretical and observational understanding of the interstellar medium of galaxies. With emphasis on the microscopic physical and chemical processes in space, and their influence on the macroscopic structure of the interstellar medium of galaxies, the book includes developments in this area of molecular astrophysics. The various heating, cooling, and chemical processes relevant for the rarefied gas and submicron-sized dust grains that constitute the interstellar medium are discussed in detail. This provides a firm foundation for an in-depth understanding of the ionized, neutral atomic, and molecular phases of the interstellar medium. The physical and chemical properties of large polycyclic aromatic hydrocarbon molecules and their role in the interstellar medium are highlighted, and the physics and chemistry of warm and dense photodissociation regions are discussed. This is an invaluable reference source for advanced undergraduate and graduate students, and research scientists.
How can we test if a supermassive black hole lies at the heart of every active galactic nucleus? What are LINERS, BL Lacs, N galaxies, broad-line radio galaxies and radio-quiet quasars and how do they compare? This timely textbook answers these questions in a clear, comprehensive and self-contained introduction to active galactic nuclei - for graduate students in astronomy and physics. The study of AGN is one of the most dynamic areas of contemporary astronomy, involving one fifth of all research astronomers. This textbook provides a systematic review of the observed properties of AGN across the entire electromagnetic spectrum, examines the underlying physics, and shows how the brightest AGN, quasars, can be used to probe the farthest reaches of the Universe. This book serves as both an entry point to the research literature and as a valuable reference for researchers in the field.
The globular star clusters of the Milky Way contain hundreds of thousands of stars held together by gravitational interactions, and date from the time when the Milky Way was forming. This 2003 text describes the theory astronomers need for studying globular star clusters. The gravitational million-body problem is an idealised model for understanding the dynamics of a cluster with a million stars. After introducing the million-body problem from various view-points, the book systematically develops the tools needed for studying the million-body problems in nature, and introduces the most important theoretical models. Including a comprehensive treatment of few-body interactions, and developing an intuitive but quantitative understanding of the three-body problem, the book introduces numerical methods, relevant software, and current problems. Suitable for graduate students and researchers in astrophysics and astronomy, this text also has important applications in the fields of theoretical physics, computational science and mathematics.
Covering all aspects of gravitation in a contemporary style, this advanced textbook is ideal for graduate students and researchers in all areas of theoretical physics. The 'Foundation' section develops the formalism in six chapters, and uses it in the next four chapters to discuss four key applications - spherical spacetimes, black holes, gravitational waves and cosmology. The six chapters in the 'Frontier' section describe cosmological perturbation theory, quantum fields in curved spacetime, and the Hamiltonian structure of general relativity, among several other advanced topics, some of which are covered in-depth for the first time in a textbook. The modular structure of the book allows different sections to be combined to suit a variety of courses. Over 200 exercises are included to test and develop the reader's understanding. There are also over 30 projects, which help readers make the transition from the book to their own original research.
Since the radio signature of our own Milky Way was detected in 1931, galaxies have been observed from ultra-high energy gamma rays to long wavelength radio waves, providing fundamental insights into their formation, evolution and structural components. Unveiling the secrets of some of the best-observed galaxies, this atlas contains over 250 full-color images spanning the whole electromagnetic spectrum. The accompanying text explains why we see the component stars, gas and dust through different radiation processes, and describes the telescopes and instruments used. This atlas is a valuable reference resource on galaxies for students seeking an overview of multiwavelength observations and what they tell us, and researchers needing detailed summaries of individual galaxies. An accompanying website, hosted by the author, contains slide shows of the galaxies covered in the book. This is available at www.cambridge.org/9780521620628.
An authoritative introduction for graduate students in the physical sciences, this textbook explains the wide variety of physical, chemical, and geological processes that govern the motions and properties of planets. The second edition of this award-winning textbook has been substantially updated and improved. It now contains a reorganized discussion of small bodies, including a detailed description of the Kuiper belt and asteroid belt; a significantly expanded chapter on extrasolar planets and what they tell us about planetary systems; and appendixes providing a glossary of acronyms, tables of key spacecraft, a summary of observing techniques, and a sampling of very recent images. With over 300 exercises to help students apply the concepts covered, this textbook is ideal for courses in astronomy, planetary science and earth science, and well suited as a reference for researchers. Color versions of many figures and movie clips supplementing the text are available at www.cambridge.org/9780521853712.
This fully revised and updated text is a comprehensive introduction to astronomical objects and phenomena. By applying some basic physical principles to a variety of situations, students will learn how to relate everyday physics to the astronomical world. Starting with the simplest objects, the text contains explanations of how and why astronomical phenomena occur, and how astronomers collect and interpret information about stars, galaxies and the solar system. The text looks at the properties of stars, star formation and evolution; neutron stars and black holes; the nature of galaxies; and the structure of the universe. It examines the past, present and future states of the universe; and final chapters use the concepts that have been developed to study the solar system, its formation; the possibility of finding other planetary systems; and the search for extraterrestrial life. This comprehensive text contains useful equations, chapter summaries, worked examples and end-of-chapter problem sets.
Designed for teaching astrophysics to physics students at advanced undergraduate or beginning graduate level, this textbook also provides an overview of astrophysics for astrophysics graduate students, before they delve into more specialized volumes. Assuming background knowledge at the level of a physics major, the textbook develops astrophysics from the basics without requiring any previous study in astronomy or astrophysics. Physical concepts, mathematical derivations and observational data are combined in a balanced way to provide a unified treatment. Topics such as general relativity and plasma physics, which are not usually covered in physics courses but used extensively in astrophysics, are developed from first principles. While the emphasis is on developing the fundamentals thoroughly, recent important discoveries are highlighted at every stage.
This authoritative textbook - the second volume of a comprehensive three-volume course on theoretical astrophysics - deals with stellar physics. Designed to help graduate students and researchers develop an understanding of the key physical processes governing stars and stellar systems, it teaches the fundamentals, and then builds on them to give the reader an in-depth understanding of advanced topics. The book's modular design allows the chapters to be approached individually, yet seamless transitions create a coherent and connected whole. It can be used alone or in conjunction with Volume I, which covers a wide range of astrophysical processes, and the forthcoming Volume III, on galaxies and cosmology. After reviewing the key observational results and nomenclature used in stellar astronomy, the book develops a solid understanding of central concepts including stellar structure and evolution, the physics of stellar remnants, pulsars, binary stars, the sun and planetary systems, interstellar medium and globular clusters. Throughout, the reader's comprehension is developed and tested with more than seventy-five exercises. This indispensable volume provides graduate students with a self-contained introduction to stellar physics, and will allow them to master the material sufficiently to read and engage in research with heightened understanding.
Charge-Coupled Devices (CCDs) are the state-of-the-art detector in many fields of observational science. Updated to include all of the latest developments in CCDs, this second edition of the Handbook of CCD Astronomy is a concise and accessible reference on all practical aspects of using CCDs. Starting with their electronic workings, it discusses their basic characteristics and then gives methods and examples of how to determine these values. While the book focuses on the use of CCDs in professional observational astronomy, advanced amateur astronomers, and researchers in physics, chemistry, medical imaging, and remote sensing will also find it very valuable. Tables of useful and hard-to-find data, key practical equations, and new exercises round off the book and ensure that it provides an ideal introduction to the practical use of CCDs for graduate students, and a handy reference for more experienced users.
Fully updated and including data from space-based observations, this Third Edition is a comprehensive compilation of the facts and figures relevant to astronomy and astrophysics. As well as a vast number of tables, graphs, diagrams and formulae it also includes a comprehensive index and bibliography, allowing readers to easily find the information they require. The book contains information covering a diverse range of topics in addition to astronomy and astrophysics, including atomic physics, nuclear physics, relativity, plasma physics, electromagnetism, mathematics, probability and statistics, and geophysics. This handbook contains the most frequently used information in modern astrophysics, and will be an essential reference for graduate students, researchers and professionals working in astronomy and the space sciences. A website with links to extensive supplementary information and databases can be found at www.cambridge.org/9780521782425.
Accretion Power in Astrophysics examines accretion as a source of energy in both binary star systems containing compact objects, and in active galactic nuclei. Assuming a basic knowledge of physics, the authors describe the physical processes at work in accretion discs and other accretion flows. The first three chapters explain why accretion is a source of energy, and then present the gas dynamics and plasma concepts necessary for astrophysical applications. The next three chapters then develop accretion in stellar systems, including accretion onto compact objects. Further chapters give extensive treatment of accretion in active galactic nuclei, and describe thick accretion discs. A new chapter discusses recently discovered accretion flow solutions. The third edition is greatly expanded and thoroughly updated. New material includes a detailed treatment of disc instabilities, irradiated discs, disc warping, and general accretion flows. The treatment is suitable for advanced undergraduates, graduate students and researchers.
Capturing the excitement and accomplishments of X-ray astronomy, this second edition now includes a broader range of astronomical phenomena and dramatic new results from the most powerful X-ray telescopes. Covering all areas of astronomical research, ranging from the smallest to the largest objects, from neutron stars to clusters of galaxies, this textbook is ideal for undergraduate students. Each chapter starts with the basic aspects of the topic, explores the history of discoveries, and examines in detail modern observations and their significance. This new edition has been updated with results from the most recent space-based instruments, including ROSAT, BeppoSAX, ASCA, Chandra, and XMM. New chapters cover X-ray emission processes, the interstellar medium, the Solar System, and gamma-ray bursts. The text is supported by over 300 figures, with tables listing the properties of the sources, and more specialized technical points separated in boxes.
This extensively illustrated book presents the astrophysics of galaxies since their beginnings in the early Universe. It has been thoroughly revised to take into account the most recent observational data, and recent discoveries such as dark energy. There are new sections on galaxy clusters, gamma ray bursts and supermassive black holes. The authors explore the basic properties of stars and the Milky Way before working out towards nearby galaxies and the distant Universe. They discuss the structures of galaxies and how galaxies have developed, and relate this to the evolution of the Universe. The book also examines ways of observing galaxies across the whole electromagnetic spectrum, and explores dark matter and its gravitational pull on matter and light. This book is self-contained and includes several homework problems with hints. It is ideal for advanced undergraduate students in astronomy and astrophysics.
This completely rewritten new edition begins with an historical perspective of the place of the solar system in the universe. Evidence from meteorites is used to describe how the planets were formed and the giant planets are considered in the light of the discovery of new extrasolar giants. Other chapters discuss satellites, comets, centaurs, asteroids and why Pluto is not a planet. Explanations on why Earth and Venus turned out so differently, and how Mars and Mercury are the survivors of many similar bodies, are also discussed. The formation of the Moon in a giant impact leads to an assessment of the importance of collisions and impacts in the solar system. It is concluded that our solar system is the end product of many accidental and chance events. This leads to the philosophical discussion of whether planets like our Earth are likely to be found elsewhere in the universe.
This textbook describes the composition and evolution of material objects in the universe. The survey begins with a discussion of terrestrial materials and ends with the composition of quasars and distant galaxies. There are two main themes: chemical processes responsible for the abundances we observe, and nuclear processes in which the chemical elements originate. The author presents a total pedagogic synthesis of the subject, building on the basic information in the first chapters leading into a fuller explanation of the composition of the planets and stellar and primordial nucleosynthesis. The later chapters treat the analytical methods of stellar and nebular spectra, and move on to the composition of stars and galaxies. The book is fully referenced and includes problem sets.
A good working knowledge of fluid mechanics and plasma physics is essential for the modern astrophysicist. This graduate textbook provides a clear, pedagogical introduction to these core subjects. Assuming an undergraduate background in physics, this book develops fluid mechanics and plasma physics from first principles.This book is unique because it presents neutral fluids and plasmas in a unified scheme, clearly indicating both their similarities and their differences. Also, both the macroscopic (continuum) and microscopic (particle) theories are developed, establishing the connections between them. Throughout, key examples from astrophysics are used, though no previous knowledge of astronomy is assumed. Exercises are included at the end of chapters to test the reader's understanding. This textbook is aimed primarily at astrophysics graduate students. It will also be of interest to advanced students in physics and applied mathematics seeking a unified view of fluid mechanics and plasma physics, encompassing both the microscopic and macroscopic theories.