To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A student-friendly style, over 100 illustrations, and numerous exercises are brought together in this textbook for advanced undergraduate and beginning graduate students in physics and mathematics. Lewis Ryder develops the theory of general relativity in detail. Covering the core topics of black holes, gravitational radiation, and cosmology, he provides an overview of general relativity and its modern ramifications. The book contains chapters on gravitational radiation, cosmology, and connections between general relativity and the fundamental physics of the microworld. It explains the geometry of curved spaces and contains key solutions of Einstein's equations - the Schwarzschild and Kerr solutions. Mathematical calculations are worked out in detail, so students can develop an intuitive understanding of the subject, as well as learn how to perform calculations. The book also includes topics concerned with the relation between general relativity and other areas of fundamental physics. Selected solutions for instructors are available under Resources.
Astronomy Methods, first published in 2003, is an introduction to the basic practical tools, methods and phenomena that underlie quantitative astronomy. Taking a technical approach, the author covers a rich diversity of topics across all branches of astronomy, from radio to gamma-ray wavelengths. Topics include the quantitative aspects of the electromagnetic spectrum, atmospheric and interstellar absorption, telescopes in all wavebands, interferometry, adaptive optics, the transport of radiation through matter to form spectral lines, and neutrino and gravitational-wave astronomy. Clear, systematic presentations of the topics are accompanied by diagrams and problem sets. Written for undergraduates and graduate students, this book contains a wealth of information that is required for the practice and study of quantitative and analytical astronomy and astrophysics.
Complete color global maps and high-resolution mosaics of Jupiter's four large moons – Io, Europa, Ganymede and Callisto – are compiled for the first time in this important atlas. The satellites are revealed as four visually striking and geologically diverse planetary bodies: Io's volcanic lavas and plumes and towering mountains; Europa's fissured ice surface; the craters, fractures and polar caps of Ganymede; and the giant impact basins, desiccated plains and icy pinnacles of Callisto. Featuring images taken from the recent Galileo mission, this atlas is a comprehensive mapping reference guide for researchers. It contains 65 global and regional maps, nearly 250 high-resolution mosaics, and images taken at resolutions from 500 meters to as high as 6 meters.
Binary systems of stars are as common as single stars. They are of fundamental importance because they allow stellar masses, radii and luminosities to be measured directly, and explain a host of diverse and energetic phenomena including X-ray binaries, cataclysmic variables, novae, symbiotic stars, and some types of supernovae. This 2001 book was the first to provide a pedagogical and comprehensive introduction to binary stars. It combines theory and observations at all wavelengths to develop a unified understanding of binaries of all categories. It comprehensively reviews methods for calculating orbits, the Roche model, ideas about mass exchange and loss, methods for analysing light curves, the masses and dimensions of different binary systems, and imaging the surfaces of stars and accretion structures. This book provides a thorough introduction to the subject for advanced undergraduate and graduate students. Researchers will also find this to be an authoritative reference.
This highly-regarded text provides a comprehensive introduction to modern particle physics. Extensively rewritten and updated, this 4th edition includes developments in elementary particle physics, as well as its connections with cosmology and astrophysics. As in previous editions, the balance between experiment and theory is continually emphasised. The stress is on the phenomenological approach and basic theoretical concepts rather than rigorous mathematical detail. Short descriptions are given of some of the key experiments in the field, and how they have influenced our thinking. Although most of the material is presented in the context of the Standard Model of quarks and leptons, the shortcomings of this model and new physics beyond its compass (such as supersymmetry, neutrino mass and oscillations, GUTs and superstrings) are also discussed. The text includes many problems and a detailed and annotated further reading list.
In the last few decades, remarkable progress has been made in understanding stars. This graduate-level 1998 textbook provides a systematic, self-contained and lucid introduction to the physical processes and fundamental equations underlying all aspects of stellar astrophysics. The volume provides authoritative astronomical discussions as well as rigorous mathematical derivations and illuminating explanations of the physical concepts involved. In addition to traditional topics such as stellar interiors and atmospheres, the reader is introduced to stellar winds, mass accretion, nuclear astrophysics, weak interactions, novae, supernovae, pulsars, neutron stars and black holes. A concise introduction to general relativity is also included. At the end of each chapter, exercises and helpful hints are provided to test and develop the understanding of the student. This advanced textbook on stellar astrophysics provides a thorough introduction for graduate students and a review for researchers.
Astronomy needs statistical methods to interpret data, but statistics is a many-faceted subject that is difficult for non-specialists to access. This handbook helps astronomers analyze the complex data and models of modern astronomy. This second edition has been revised to feature many more examples using Monte Carlo simulations, and now also includes Bayesian inference, Bayes factors and Markov chain Monte Carlo integration. Chapters cover basic probability, correlation analysis, hypothesis testing, Bayesian modelling, time series analysis, luminosity functions and clustering. Exercises at the end of each chapter guide readers through the techniques and tests necessary for most observational investigations. The data tables, solutions to problems, and other resources are available online at www.cambridge.org/9780521732499. Bringing together the most relevant statistical and probabilistic techniques for use in observational astronomy, this handbook is a practical manual for advanced undergraduate and graduate students and professional astronomers.
Cosmology: The Science of the Universe is an introduction to past and present cosmological theory. For much of the world's history, cosmological thought was formulated in religious or philosophical language and was thus theological or metaphysical in nature. However, cosmological speculation and theory is now a science in which the empirical discoveries of the astronomer, theoretical physicist, and biologist are woven into intricate models that attempt to account for the universe as a whole. Professor Harrison draws on the discoveries and speculations of these scientists to provide a comprehensive survey of mankind's current understanding of the universe and its history. Tracing the rise of the scientific method, the major aim of this book is to provide an elementary understanding of the physical universe of modern times. This second edition, originally published in 2000, has received high praise for Harrison's wide-ranging insights into the universe at large.
The cosmic microwave background (CMB) is the radiation left over from the Big Bang. Recent analysis of the fluctuations in this radiation has given us valuable insights into our Universe and its parameters. Examining the theory of CMB and recent developments, this textbook starts with a brief introduction to modern cosmology and its main successes, followed by a thorough derivation of cosmological perturbation theory. It then explores the generation of initial fluctuations by inflation. The Boltzmann equation governs the evolution of CMB anisotropies and polarization is derived using the total angular momentum method. Cosmological parameter estimation and the lensing of CMB fluctuations and spectral distortions are also discussed. This textbook is the first to contain a full derivation of the theory of CMB anisotropies and polarization. Ideal for graduate students and researchers in this field, it includes end-of-chapter exercises, and solutions to selected exercises are provided.
The Solar System is a complex and fascinating dynamical system. This is the first textbook to describe comprehensively the dynamical features of the Solar System and to provide students with all the mathematical tools and physical models they need to understand how it works. It is a benchmark publication in the field of planetary dynamics and destined to become a classic. Clearly written and well illustrated, Solar System Dynamics shows how a basic knowledge of the two- and three-body problems and perturbation theory can be combined to understand features as diverse as the tidal heating of Jupiter's moon Io, the origin of the Kirkwood gaps in the asteroid belt, and the radial structure of Saturn's rings. Problems at the end of each chapter and a free Internet Mathematica® software package are provided. Solar System Dynamics provides an authoritative textbook for courses on planetary dynamics and celestial mechanics. It also equips students with the mathematical tools to tackle broader courses on dynamics, dynamical systems, applications of chaos theory and non-linear dynamics.
Plasma Physics presents an authoritative and wide-ranging pedagogic study of the 'fourth' state of matter. The constituents of the plasma state are influenced by electric and magnetic fields, and in turn also produce electric and magnetic fields. This fact leads to a rich array of properties of the plasma state. A basic knowledge of mathematics and physics is preferable to appreciate fully this text. The author uses examples throughout, many taken from astrophysical phenomena, to explain concepts. In addition, problem sets at the end of each chapter will serve to reinforce key points.
Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This graduate textbook, first published in 2007, provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.
This lavishly illustrated new dictionary written by an experienced writer and consultant on astronomy provides an essential guide to the universe for amateur astronomers of all ages. Around 1300 carefully selected and cross-referenced entries are complemented by hundreds of beautiful colour illustrations, taken from space missions, the Hubble Space Telescope, and other major observatories on Earth and in space. Distinguished stellar illustrator Wil Tirion has drawn 20 new star maps especially for inclusion here. A myriad of named astronomical objects, constellations, observatories and space missions are described in detail, as well as biographical sketches for 70 of the most luminous individuals in the history of astronomy and space science. Acronyms and specialist terms are clearly explained, making for the most thorough and carefully assembled reference resource that teachers and enthusiasts of astronomy will ever need.
This new edition textbook explains remote sensing of the Earth's surface and atmosphere from space using electromagnetic radiation. It covers topics such as overviews of electromagnetic propagation in free space and in matter, surface and volume scattering, the interaction of radiation with the atmosphere, the main classes of sensor, satellite orbits for remote sensing, and an introduction to image processing. Extensively revised and expanded, the second edition contains completely new material, including a discussion of the radiative transfer equation, atmospheric sounding techniques and interferometric radar and a discussion of GPS. Also including numerous problems with solutions, this book forms the basis of an introductory course for students in remote sensing, geography, cartography, surveying, meteorology, earth sciences and environmental sciences. It will also be an essential reference for researchers and a useful supplementary text in some physics, mathematics and engineering courses.
Planetary Surface Processes is the first advanced textbook to cover the full range of geologic processes that shape the surfaces of planetary-scale bodies. Using a modern, quantitative approach, this book reconsiders geologic processes outside the traditional terrestrial context. It highlights processes that are contingent upon Earth's unique circumstances and processes that are universal. For example, it shows explicitly that equations predicting the velocity of a river are dependent on gravity: traditional geomorphology textbooks fail to take this into account. This textbook is a one-stop source of information on planetary surface processes, providing readers with the necessary background to interpret new data from NASA, ESA and other space missions. Based on a course taught by the author at the University of Arizona for 25 years, it is aimed at advanced students, and is also an invaluable resource for researchers, professional planetary scientists and space-mission engineers.
Spectroscopy enables the precise study of astronomical objects and phenomena. Bridging the gap between physics and astronomy, this is the first integrated graduate-level textbook on atomic astrophysics. It covers the basics of atomic physics and astrophysics, including state-of-the-art research applications, methods and tools. The content is evenly balanced between the physical foundations of spectroscopy and their applications to astronomical objects and cosmology. An undergraduate knowledge of physics is assumed, and relevant basic material is summarized at the beginning of each chapter. The material is completely self-contained and features sufficient background information for self-study. Advanced users will find it handy for spectroscopic studies. A website hosted by the authors contains updates, corrections, exercises and solutions, as well as news items from physics and astronomy related to spectroscopy. A link to this can be found at www.cambridge.org/9780521825368.
Masers are observed at a range of scales - from comets, through star-forming clouds, to galactic nuclei - and have many astrophysical applications, for example measuring cosmological distances. Written for postgraduate students and professional researchers in molecular astrophysics, this volume is an up-to-date survey of the theory and observations of astrophysical maser sources and their use as astronomical tools. The book summarizes the history of the discovery of various maser molecules and lines, and discusses maser observations on various scales. The theory is discussed in detail, including the quantum-mechanical response of the molecules, before being linked to more general radiation transfer. A discussion of spectral-line radio astronomy techniques shows how maser observations can be applied more generally to radio astronomy. The book introduces new and projected instruments, including ALMA and SKA. Additional topics address the radiation statistics of astrophysical masers, and numerical methods of analysis.
J. P. Nichol (1804–59), astronomer and political economist, was Regius Professor of Astronomy at the University of Glasgow. He brought astronomy to a non-scientific audience through his enthusiastic public lectures and astronomy books. His works include the popular Views of the Architecture of the Heavens (1837; also reissued in this series) in which he supported the nebular hypothesis, which in modified form is the model of star formation most widely accepted today. Neptune was (in 1846) the first planet to be discovered by mathematical prediction rather than empirical observation, and in this book, first published in 1855, Nichol describes that discovery to a lay readership. Part 1 is an exposition of the then current view of the solar system and the research and discoveries which led to that view; Part 2 is dedicated to Neptune; while the third part explains the controversies over the planet's discovery.
Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers. A website hosted by the authors, featuring solutions to some exercises and additional reading material, can be found at www.cambridge.org/supergravity.
Black holes are one of the most remarkable predictions of Einstein's general relativity. In recent years, ideas in brane-world cosmology, string theory and gauge/gravity duality have motivated studies of black holes in more than four dimensions, with surprising results. In higher dimensions, black holes exist with exotic shapes and unusual dynamics. Edited by leading expert Gary Horowitz, this exciting book is the first devoted to this new field. The major discoveries are explained by the people who made them: Rob Myers describes the Myers–Perry solutions that represent rotating black holes in higher dimensions; Ruth Gregory describes the Gregory–Laflamme instability of black strings; and Juan Maldacena introduces gauge/gravity duality, the remarkable correspondence that relates a gravitational theory to nongravitational physics. Accessible to anyone with a standard course in general relativity, this is an important resource for graduate students and researchers in general relativity, string theory and high energy physics.