To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Star-formation is one of the key processes that shape the current state and evolution of galaxies. This volume provides a comprehensive presentation of the different methods used to measure the intensity of recent or on-going star-forming activity in galaxies, discussing their advantages and complications in detail. It includes a thorough overview of the theoretical underpinnings of star-formation rate indicators, including topics such as stellar evolution and stellar spectra, the stellar initial mass function, and the physical conditions in the interstellar medium. The authors bring together in one place detailed and comparative discussions of traditional and new star-formation rate indicators, star-formation rate measurements in different spatial scales, and comparisons of star-formation rate indicators probing different stellar populations, along with the corresponding theoretical background. This is a useful reference for students and researchers working in the field of extragalactic astrophysics and studying star-formation in local and higher-redshift galaxies.
The invention and development of advanced methods to detect light underlies much of modern technology. This fully updated and restructured third edition is unique amongst the literature, providing a comprehensive, uniform discussion of a broad range of detection approaches. The material is accessible to a broad range of readers rather than just highly trained specialists, beginning with first principles and developing the relevant physics as it goes. The book emphasizes physical understanding of detector operation, without being a catalog of current examples. It is self-contained but also provides a bridge to more specialized works on specific approaches; each chapter points readers toward the relevant literature. This will provide a broad and lasting understanding of the methods for detecting light that underpin so much of our technology. The book is suitable for advanced undergraduate and graduate students, and will provide a valuable reference for professionals across physics and engineering disciplines.
Knowledge of the output and three dimensional distribution of all constituents of galaxies (stars of all ages, gas, dust, cosmic rays) is a prerequisite for understanding the process of star-formation along the cosmic time, and ultimately the formation and evolution of galaxies. However, what we measure is the spatial and spectral energy distribution (SED) of galaxies. In this chapter we describe self-consistent modeling of the SED involvingradiative transfer (RT) calculations that follow the interaction between stellar photons and dust particles, and make predictions for all emission mechanisms involved. Tracing the energy flow and accounting for the anisotropy of the problem requires modelling of SEDs spanning a broad range in wavelengths and the spatial distribution of the emission. A RT modelaccurately calculates the stellar SEDs emitted by the newly-formed stars by both calculating the effect of dust attenuation throughout the galaxy, and by providing a three dimensional picture of the stellar emission of these stars. This way it produces a solution for the SFR, and the 3D distributions of all stellar components of a galaxy (stars of all ages and from different morphological components, like disks, bulges, and bars) and of the dust distribution, giving us a detailed understanding of the make up of a galaxy, both of its stellar content and of the interstellar medium structure.