To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Typical radio interferometer observations are performed assuming the source of radiation to be in the far-field of the instrument, resulting in a two-dimensional Fourier relationship between the observed visibilities in the aperture plane and the sky brightness distribution (over a small field of view). When near-field objects are present in an observation, the standard approach applies far-field delays during correlation, resulting in loss of signal coherence for the signal from the near-field object. In this paper, we demonstrate near-field aperture synthesis techniques using a Murchison Widefield Array observation of the International Space Station (ISS), as it appears as a bright near-field object. We perform visibility phase corrections to restore coherence across the array for the near-field object (however not restoring coherence losses due to time and frequency averaging at the correlator). We illustrate the impact of the near-field corrections in the aperture plane and the sky plane. The aperture plane curves to match the curvature of the near-field wavefront, and in the sky plane near-field corrections manifest as fringe rotations at different rates as we bring the focal point of the array from infinity to the desired near-field distance. We also demonstrate the inverse scenario of inferring the line-of-sight range of the ISS by inverting the apparent curvature of the wavefront seen by the aperture. We conclude the paper by briefly discussing the limitations of the methods developed and the near-field science cases where our approach can be exploited.
Radio interferometers can potentially detect the sky-averaged signal from the Cosmic Dawn (CD) and the Epoch of Reionisation (EoR) by studying the Moon as a thermal block to the foreground sky. The first step is to mitigate the Earth-based radio frequency interference (RFI) reflections (Earthshine) from the Moon, which significantly contaminate the FM band $\approx 88-110$ MHz, crucial to CD-EoR science. We analysed Murchison Widefield Array (MWA) phase I data from 72 to 180 MHz at 40 kHz resolution to understand the nature of Earthshine over three observing nights. We took two approaches to correct the Earthshine component from the Moon. In the first method, we mitigated the Earthshine using the flux density of the two components from the data, while in the second method, we used simulated flux density based on an FM catalogue to mitigate the Earthshine. Using these methods, we were able to recover the expected Galactic foreground temperature of the patch of sky obscured by the Moon. We performed a joint analysis of the Galactic foregrounds and the Moon’s intrinsic temperature $(T_{\mathrm{Moon}})$ while assuming that the Moon has a constant thermal temperature throughout three epochs. We found $T_{\mathrm{Moon}}$ to be at $184.4\pm{2.6}\,\mathrm{K}$ and $173.8\pm{2.5}\,\mathrm{K}$ using the first and the second methods, respectively, and the best-fit values of the Galactic spectral index $(\alpha)$ to be within the 5% uncertainty level when compared with the global sky models. Compared with our previous work, these results improved constraints on the Galactic spectral index and the Moon’s intrinsic temperature. We also simulated the Earthshine at MWA between November and December 2023 to find suitable observing times less affected by the Earthshine. Such observing windows act as Earthshine avoidance and can be used to perform future global CD-EoR experiments using the Moon with the MWA.
Recent studies of Galactic evolution revealed that the dynamics of the stellar component might be one of the key factors when considering galactic habitability. We run an N-body simulation model of the Milky Way, which we evolve for 10 Gyr, to study the secular evolution of stellar orbits and the resulting galactic habitability related properties, i.e., the density of the stellar component and close stellar encounters. The results indicate that radial migrations are not negligible, even in a simple axisymmetric model with mild levels of dynamical heating, and that the net outward diffusion of the stellar component can populate galactic outskirts with habitable systems. Habitable environment is also likely even at sub-Solar galactocentric radii, because the rate of close encounters should not significantly degrade habitability. Stars that evolve from non-circular to stable nearly circular orbits typically migrate outwards, settling down in a broad Solar neighbourhood. The region between $R \approx 3$ kpc and $R \approx 12$ kpc represents the zone of radial mixing, which can blur the boundaries of the Galactic Habitable Zone (GHZ), as it has been conventionally understood. The present-day stable population of the stars in the Solar neighbourhood originates from this radial mixing zone, with most of the stars coming from the inner regions. The Solar system can be considered as a typical Milky Way habitable system because it migrated outwards from the metal-rich inner regions of the Disk and has a circular orbit in the present epoch. We conclude that the boundaries of the GHZ cannot be sharply confined for a given epoch because of the mixing caused by the stellar migrations and secular evolution of stellar orbits.
Discs of gas and dust are ubiquitous around protostars. Hypothetical viscous interactions within the disc are thought to cause the gas and dust to accrete onto the star. Turbulence within the disc is theorised to be the source of this disc viscosity. However, observed protostellar disc turbulence often appears to be small and not always conducive to disc accretion. In addition, theories for disc and planet evolution have difficulty in explaining the observed disc rings/gaps which form much earlier than expected.
Protostellar accretion discs are observed to contain significant quantities of dust and pebbles. Observations also show that some of this material is ejected from near the protostar, where it travels to the outer regions of the disc. Such solid infalling material has a relatively small amount of angular momentum compared to the material in the disc. This infalling material lowers the angular momentum of the disc and should drive a radial flow towards the protostar.
We show that the local radial accretion speed of the disc is proportional to the mass rate of infalling material onto the disc. Higher rates of infall onto the disc implies higher radial accretion disc speeds. As such, regions with high rates of infall of gas, dust, and pebbles onto the disc will produce gaps on relatively short timescales in the disc, while regions associated with relative low rates of infalling material will produce disc rings. As such, the inner edge of a disc gap will tend to have a higher surface density, which may enhance the probability of planet formation. In addition, the outer edge of a disc gap will act as a dust trap and may also become a site for planet formation.
For the early Solar System, such a process may have collected O$^{16}$-poor forsterite dust from the inner regions of the protosolar disc and O$^{16}$-rich CAIs and AOAs from the inner edge regions of the protosolar disc, thereby constructing a region favourable to the formation of pre-chondritic planetesimals.
We present and evaluate the prospects for detecting coherent radio counterparts to gravitational wave (GW) events using Murchison Widefield Array (MWA) triggered observations. The MWA rapid-response system, combined with its buffering mode ($\sim$4 min negative latency), enables us to catch any radio signals produced from seconds prior to hours after a binary neutron star (BNS) merger. The large field of view of the MWA ($\sim$$1\,000\,\textrm{deg}^2$ at 120 MHz) and its location under the high sensitivity sky region of the LIGO-Virgo-KAGRA (LVK) detector network, forecast a high chance of being on-target for a GW event. We consider three observing configurations for the MWA to follow up GW BNS merger events, including a single dipole per tile, the full array, and four sub-arrays. We then perform a population synthesis of BNS systems to predict the radio detectable fraction of GW events using these configurations. We find that the configuration with four sub-arrays is the best compromise between sky coverage and sensitivity as it is capable of placing meaningful constraints on the radio emission from 12.6% of GW BNS detections. Based on the timescales of four BNS merger coherent radio emission models, we propose an observing strategy that involves triggering the buffering mode to target coherent signals emitted prior to, during or shortly following the merger, which is then followed by continued recording for up to three hours to target later time post-merger emission. We expect MWA to trigger on $\sim$$5-22$ BNS merger events during the LVK O4 observing run, which could potentially result in two detections of predicted coherent emission.
Regardless of whether or not all fast radio bursts (FRBs) repeat, those that do form a population with a distribution of rates. This work considers a power-law model of this population, with rate distribution $\Phi_r \sim R^{{\gamma_r}}$ between ${R_{\rm min}}$ and ${R_{\rm max}}$. The zDM code is used to model the probability of detecting this population as either apparently once-off or repeat events as a function of redshift, z, and dispersion measure, DM. I demonstrate that in the nearby Universe, repeating sources can contribute significantly to the total burst rate. This causes an apparent deficit in the total number of observed sources (once-off and repeaters) relative to the distant Universe that will cause a bias in FRB population models. Thus instruments with long exposure times should explicitly take repetition into account when fitting the FRB population. I then fit data from The Canadian Hydrogen Intensity Mapping Experiment (CHIME). The relative number of repeat and apparently once-off FRBs, and their DM, declination, and burst rate distributions, can be well explained by 50–100% of CHIME single FRBs being due to repeaters, with ${R_{\rm max}} > 0.75$ d$^{-1}$ above $10^{39}$ erg, and ${{\gamma_r}} = -2.2_{-0.8}^{+0.6}$. This result is surprisingly consistent with follow-up studies of FRBs detected by the Australian Square Kilometre Array Pathfinder (ASKAP). Thus the evidence suggests that CHIME and ASKAP view the same repeating FRB population, which is responsible not just for repeating FRBs, but the majority of apparently once-off bursts. For greater quantitative accuracy, non-Poissonian arrival times, second-order effects in the CHIME response, and a simultaneous fit to the total FRB population parameters, should be treated in more detail in future studies.
RadioTalk is a communication platform that enabled members of the Radio Galaxy Zoo (RGZ) citizen science project to engage in discussion threads and provide further descriptions of the radio subjects they were observing in the form of tags and comments. It contains a wealth of auxiliary information which is useful for the morphology identification of complex and extended radio sources. In this paper, we present this new dataset, and for the first time in radio astronomy, we combine text and images to automatically classify radio galaxies using a multi-modal learning approach. We found incorporating text features improved classification performance which demonstrates that text annotations are rare but valuable sources of information for classifying astronomical sources, and suggests the importance of exploiting multi-modal information in future citizen science projects. We also discovered over 10000 new radio sources beyond the RGZ-DR1 catalogue in this dataset.
High-redshift Lyman break galaxies (LBGs) are efficiently selected in deep images using as few as three broadband filters, and have been shown to have multiple intrinsic and small- to large-scale environmental properties related to Lyman-$\alpha$. In this paper we demonstrate a statistical relationship between net Lyman-$\alpha$ equivalent width (net Ly$\alpha$ EW) and the optical broadband photometric properties of LBGs at $z\sim2$. We show that LBGs with the strongest net Ly$\alpha$ EW in absorption (aLBGs) and strongest net Ly$\alpha$ EW in emission (eLBGs) separate into overlapping but discrete distributions in $(U_n-\mathcal{R})$ colour and $\mathcal{R}$-band magnitude space, and use this segregation behaviour to determine photometric selection criteria by which sub-samples with a desired Ly$\alpha$ spectral type can be selected using data from as few as three broadband optical filters. We propose application of our result to current and future large-area and all-sky photometric surveys that will select hundreds of millions of LBGs across many hundreds to thousands of Mpc, and for which spectroscopic follow-up to obtain Ly$\alpha$ spectral information is prohibitive. To this end, we use spectrophotometry of composite spectra derived from a sample of 798 LBGs divided into quartiles on the basis of net Ly$\alpha$ EW to calculate selection criteria for the isolation of Ly$\alpha$-absorbing and Ly$\alpha$-emitting populations of $z\sim3$ LBGs using ugri broadband photometric data from the Vera Rubin Observatory Legacy Survey of Space and Time (LSST).
In this work, we present a methodology and a corresponding code-base for constructing mock integral field spectrograph (IFS) observations of simulated galaxies in a consistent and reproducible way. Such methods are necessary to improve the collaboration and comparison of observation and theory results, and accelerate our understanding of how the kinematics of galaxies evolve over time. This code, SimSpin, is an open-source package written in R, but also with an API interface such that the code can be interacted with in any coding language. Documentation and individual examples can be found at the open-source website connected to the online repository. SimSpin is already being utilised by international IFS collaborations, including SAMI and MAGPI, for generating comparable data sets from a diverse suite of cosmological hydrodynamical simulations.
The present work discusses the use of a weakly-supervised deep learning algorithm that reduces the cost of labelling pixel-level masks for complex radio galaxies with multiple components. The algorithm is trained on weak class-level labels of radio galaxies to get class activation maps (CAMs). The CAMs are further refined using an inter-pixel relations network (IRNet) to get instance segmentation masks over radio galaxies and the positions of their infrared hosts. We use data from the Australian Square Kilometre Array Pathfinder (ASKAP) telescope, specifically the Evolutionary Map of the Universe (EMU) Pilot Survey, which covered a sky area of 270 square degrees with an RMS sensitivity of 25–35 $\mu$Jy beam$^{-1}$. We demonstrate that weakly-supervised deep learning algorithms can achieve high accuracy in predicting pixel-level information, including masks for the extended radio emission encapsulating all galaxy components and the positions of the infrared host galaxies. We evaluate the performance of our method using mean Average Precision (mAP) across multiple classes at a standard intersection over union (IoU) threshold of 0.5. We show that the model achieves a mAP$_{50}$ of 67.5% and 76.8% for radio masks and infrared host positions, respectively. The network architecture can be found at the following link: https://github.com/Nikhel1/Gal-CAM
The Australian SKA Pathfinder (ASKAP) radio telescope has carried out a survey of the entire Southern Sky at 887.5 MHz. The wide area, high angular resolution, and broad bandwidth provided by the low-band Rapid ASKAP Continuum Survey (RACS-low) allow the production of a next-generation rotation measure (RM) grid across the entire Southern Sky. Here we introduce this project as Spectral and Polarisation in Cutouts of Extragalactic sources from RACS (SPICE-RACS). In our first data release, we image 30 RACS-low fields in Stokes I, Q, U at 25$^{\prime\prime}$ angular resolution, across 744–1032 MHz with 1 MHz spectral resolution. Using a bespoke, highly parallelised, software pipeline we are able to rapidly process wide-area spectro-polarimetric ASKAP observations. Notably, we use ‘postage stamp’ cutouts to assess the polarisation properties of 105912 radio components detected in total intensity. We find that our Stokes Q and U images have an rms noise of $\sim$80 $\unicode{x03BC}$Jy PSF$^{-1}$, and our correction for instrumental polarisation leakage allows us to characterise components with $\gtrsim$1% polarisation fraction over most of the field of view. We produce a broadband polarised radio component catalogue that contains 5818 RM measurements over an area of $\sim$1300 deg$^{2}$ with an average error in RM of $1.6^{+1.1}_{-1.0}$ rad m$^{-2}$, and an average linear polarisation fraction $3.4^{+3.0}_{-1.6}$ %. We determine this subset of components using the conditions that the polarised signal-to-noise ratio is $>$8, the polarisation fraction is above our estimated polarised leakage, and the Stokes I spectrum has a reliable model. Our catalogue provides an areal density of $4\pm2$ RMs deg$^{-2}$; an increase of $\sim$4 times over the previous state-of-the-art (Taylor, Stil, Sunstrum 2009, ApJ, 702, 1230). Meaning that, having used just 3% of the RACS-low sky area, we have produced the 3rd largest RM catalogue to date. This catalogue has broad applications for studying astrophysical magnetic fields; notably revealing remarkable structure in the Galactic RM sky. We will explore this Galactic structure in a follow-up paper. We will also apply the techniques described here to produce an all-Southern-sky RM catalogue from RACS observations. Finally, we make our catalogue, spectra, images, and processing pipeline publicly available.
We present observations of the Mopra carbon monoxide (CO) survey of the Southern Galactic Plane, covering Galactic longitudes spanning $l = 250^{\circ}$ ($-110^{\circ}$) to $l = 355^{\circ}$ ($-5^{\circ}$), with a latitudinal coverage of at least $|b|<1^\circ$, totalling an area of $>$210 deg$^{2}$. These data have been taken at 0.6 arcmin spatial resolution and 0.1 km s$^{-1}$ spectral resolution, providing an unprecedented view of the molecular gas clouds of the Southern Galactic Plane in the 109–115 GHz $J = 1-0$ transitions of $^{12}$CO, $^{13}$CO, C$^{18}$O, and C$^{17}$O.
Asymmetric emission of gravitational waves during mergers of black holes (BHs) produces a recoil kick, which can set a newly formed BH on a bound orbit around the centre of its host galaxy, or even completely eject it. To study this population of recoiling BHs we extract properties of galaxies with merging BHs from Illustris TNG300 simulation and then employ both analytical and numerical techniques to model unresolved process of BH recoil. This comparative analysis between analytical and numerical models shows that, on cosmological scales, numerically modelled recoiling BHs have a higher escape probability and predict a greater number of offset active galactic nuclei (AGN). BH escaped probability $>$40% is expected in 25$\%$ of merger remnants in numerical models, compared to 8$\%$ in analytical models. At the same time, the predicted number of offset AGN at separations ${>}5$ kpc changes from 58$\%$ for numerical models to 3$\%$ for analytical models. Since BH ejections in major merger remnants occur in non-virialised systems, static analytical models cannot provide an accurate description. Thus we argue that numerical models should be used to estimate the expected number density of escaped BHs and offset AGN.
We study the correlation between the non-thermal velocity dispersion ($\sigma_{nth}$) and the length scale (L) in the neutral interstellar medium (ISM) using a large number of Hi gas components taken from various published Hi surveys and previous Hi studies. We notice that above the length-scale (L) of 0.40 pc, there is a power-law relationship between $\sigma_{nth}$ and L. However, below 0.40 pc, there is a break in the power law, where $\sigma_{nth}$ is not significantly correlated with L. It has been observed from the Markov chain Monte Carlo (MCMC) method that for the dataset of L$\gt$ 0.40 pc, the most probable values of intensity (A) and power-law index (p) are 1.14 and 0.55, respectively. Result of p suggests that the power law is steeper than the standard Kolmogorov law of turbulence. This is due to the dominance of clouds in the cold neutral medium. This is even more clear when we separate the clouds into two categories: one for L is $\gt$ 0.40 pc and the kinetic temperature ($T_{k}$) is $\lt$250 K, which are in the cold neutral medium (CNM) and for other one where L is $\gt$0.40 pc and $T_{k}$ is between 250 and 5 000 K, which are in the thermally unstable phase (UNM). Most probable values of A and p are 1.14 and 0.67, respectively, in the CNM phase and 1.01 and 0.52, respectively, in the UNM phase. A greater number of data points is effective for the UNM phase in constructing a more accurate estimate of A and p, since most of the clouds in the UNM phase lie below 500 K. However, from the value of p in the CNM phase, it appears that there is a significant difference from the Kolmogorov scaling, which can be attributed to a shock-dominated medium.
We present a method for identifying radio stellar sources using their proper-motion. We demonstrate this method using the FIRST, VLASS, RACS-low and RACS-mid radio surveys, and astrometric information from Gaia Data Release 3. We find eight stellar radio sources using this method, two of which have not previously been identified in the literature as radio stars. We determine that this method probes distances of $\sim$90pc when we use FIRST and RACS-mid, and $\sim$250pc when we use FIRST and VLASS. We investigate the time baselines required by current and future radio sky surveys to detect the eight sources we found, with the SKA (6.7 GHz) requiring $<$3 yr between observations to find all eight sources. We also identify nine previously known and 43 candidate variable radio stellar sources that are detected in FIRST (1.4 GHz) but are not detected in RACS-mid (1.37 GHz). This shows that many stellar radio sources are variable, and that surveys with multiple epochs can detect a more complete sample of stellar radio sources.
The advent of time-domain sky surveys has generated a vast amount of light variation data, enabling astronomers to investigate variable stars with large-scale samples. However, this also poses new opportunities and challenges for the time-domain research. In this paper, we focus on the classification of variable stars from the Catalina Surveys Data Release 2 and propose an imbalanced learning classifier based on Self-paced Ensemble (SPE) method. Compared with the work of Hosenie et al. (2020), our approach significantly enhances the classification Recall of Blazhko RR Lyrae stars from 12% to 85%, mixed-mode RR Lyrae variables from 29% to 64%, detached binaries from 68% to 97%, and LPV from 87% to 99%. SPE demonstrates a rather good performance on most of the variable classes except RRab, RRc, and contact and semi-detached binary. Moreover, the results suggest that SPE tends to target the minority classes of objects, while Random Forest is more effective in finding the majority classes. To balance the overall classification accuracy, we construct a Voting Classifier that combines the strengths of SPE and Random Forest. The results show that the Voting Classifier can achieve a balanced performance across all classes with minimal loss of accuracy. In summary, the SPE algorithm and Voting Classifier are superior to traditional machine learning methods and can be well applied to classify the periodic variable stars. This paper contributes to the current research on imbalanced learning in astronomy and can also be extended to the time-domain data of other larger sky survey projects (LSST, etc.).
To explore the role environment plays in influencing galaxy evolution at high redshifts, we study $2.0\leq z<4.2$ environments using the FourStar Galaxy Evolution (ZFOURGE) survey. Using galaxies from the COSMOS legacy field with ${\rm log(M_{*}/M_{\odot})}\geq9.5$, we use a seventh nearest neighbour density estimator to quantify galaxy environment, dividing this into bins of low-, intermediate-, and high-density. We discover new high-density environment candidates across $2.0\leq z<2.4$ and $3.1\leq z<4.2$. We analyse the quiescent fraction, stellar mass and specific star formation rate (sSFR) of our galaxies to understand how these vary with redshift and environment. Our results reveal that, across $2.0\leq z<2.4$, the high-density environments are the most significant regions, which consist of elevated quiescent fractions, ${\rm log(M_{*}/M_{\odot})}\geq10.2$ massive galaxies and suppressed star formation activity. At $3.1\leq z<4.2$, we find that high-density regions consist of elevated stellar masses but require more complete samples of quiescent and sSFR data to study the effects of environment in more detail at these higher redshifts. Overall, our results suggest that well-evolved, passive galaxies are already in place in high-density environments at $z\sim2.4$, and that the Butcher–Oemler effect and SFR-density relation may not reverse towards higher redshifts as previously thought.
The Australian SKA Pathfinder (ASKAP) is being used to undertake a campaign to rapidly survey the sky in three frequency bands across its operational spectral range. The first pass of the Rapid ASKAP Continuum Survey (RACS) at 887.5 MHz in the low band has already been completed, with images, visibility datasets, and catalogues made available to the wider astronomical community through the CSIRO ASKAP Science Data Archive (CASDA). This work presents details of the second observing pass in the mid band at 1367.5 MHz, RACS-mid, and associated data release comprising images and visibility datasets covering the whole sky south of $\delta_{\text{J2000}}=+49^\circ$. This data release incorporates selective peeling to reduce artefacts around bright sources, as well as accurately modelled primary beam responses. The Stokes I images reach a median noise of 198 $\mu$Jy PSF$^{-1}$ with a declination-dependent angular resolution of 8.1–47.5 arcsec that fills a niche in the existing ecosystem of large-area astronomical surveys. We also supply Stokes V images after application of a widefield leakage correction, with a median noise of 165 $\mu$Jy PSF$^{-1}$. We find the residual leakage of Stokes I into V to be $\lesssim 0.9$–$2.4$% over the survey. This initial RACS-mid data release will be complemented by a future release comprising catalogues of the survey region. As with other RACS data releases, data products from this release will be made available through CASDA.
A model of dynamical evolution of meteoroid swarm is applied to study the problem of difference in mass spectra of meteoric bodies during meteor showers and for sporadic meteors. It is demonstrated that mass spectra forms within meteoroid stream. Qualitative behavior of mass index in model is consistent with observational data.