To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This section adds details for several past orbiter missions to bring them up to date, and includes the discovery of the Beagle 2 lander apparently intact on the Martian surface.
This section examines planning for missions after Curiosity, including the process of landing site selection. It depicts the activities of NASA’s InSight lander and Perseverance rover, China’s Tianwen-1 lander and Zhurong rover, and orbiting spacecraft including MAVEN, Hope and the Trace Gas Orbiter. Plans for future human exploration of Mars are presented as they were imagined in this period.
Porous membranes, like nets or filters, are thin structures that allow fluid to flow through their pores. Homogenisation can be used to rigorously link the flow velocity with the stresses on the membrane via several coefficients (e.g. permeability and slip) stemming from the solution of Stokes problems at the pore level. For a periodic microstructure, the geometry of a single pore determines these coefficients for the whole membrane. However, many biological membranes are not periodic, and the porous microstructure of industrial membranes can be modified to address specific needs, resulting in non-periodic patterns of solid inclusions and pores. In this case, multiple microscopic calculations are needed to retrieve the local non-periodic membrane properties, negatively affecting the efficiency of the homogenised model. In this paper, we introduce an adjoint-based procedure that drastically reduces the computational cost of these operations by computing the pore-scale solution’s first- and second-order sensitivities to geometric modifications. This adjoint-based technique only requires the solution of a few problems on a reference geometry and allows us to find the homogenised solution on any number of modified geometries. This new adjoint-based homogenisation procedure predicts the macroscopic flow around a thin aperiodic porous membrane at a fraction of the computational cost of classical approaches while maintaining comparable accuracy.
The potential of a galaxy to host habitable planets is one of the most important questions in astrobiology. It is tightly connected to the evolution of galaxy-scale properties and the underlying cosmological processes. Using the improved cosmological simulation IllustrisTNG, we revisit the claim that a population of small, metal-rich, star-forming galaxies (‘Cloudlet’), forms a local peak on the mass-metallicity relation, reflecting an enhanced galactic habitability potential. We refine the earlier analysis by applying updated filtering criteria to identify a more refined sample, further selecting objects based on their history. This process resulted in a confirmed sample of 97 dwarf galaxies, alongside 519 additional structures of uncertain origin, potentially comprising both numerical artefacts and unrecognised physical systems. Under these stricter conditions, the proposed bimodality in galactic habitability is strongly diminished. However, the astrobiological potential of metal-rich dwarfs, most of which are compact remnants of more massive galaxies that underwent tidal stripping, is a thrilling area of exploration. Although dense stellar environments are traditionally seen as inhospitable, recent studies highlight the role of dynamic environments in enhancing the distribution of biological material. Furthermore, the potential habitability of tidal structures formed in the aftermath of galactic interactions is a fascinating possibility. Our findings suggest that non-traditional structures support conditions favourable for life, opening up exciting new avenues for astrobiological research. This research underscores the need for a holistic approach to studying habitability that moves beyond planetary and stellar-focused frameworks to incorporate the broader galactic environment. Understanding the interactions between galaxies, their evolution, and the influence of their surroundings is essential to developing a more comprehensive model of how and where life might emerge and persist across the Universe.