To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Ionizing radiation is known to have a destructive effect on biology by causing damage to DNA, cells and the production of reactive oxygen species, among other things. While direct exposure to high-radiation dose is indeed not favorable for biological activity, ionizing radiation can and, in some cases, is known to produce a number of biologically useful products. One such mechanism is the production of biologically useful products via charged particle-induced radiolysis. Energetic charged particles interact with the surfaces of planetary objects such as Mars, Europa and Enceladus without much shielding from their rarefied atmospheres. Depending on the energy of said particles, they can penetrate several meters deep below the surface and initiate a number of chemical reactions along the way. Some of the byproducts are impossible to produce with lower-energy radiation (such as sunlight), opening up new avenues for life to utilize them. The main objective of the manuscript is to explore the concept of a Radiolytic Habitable Zone (RHZ), where the chemistry of galactic cosmic ray-induced radiolysis can be potentially utilized for metabolic activity. We first calculate the energy deposition and the electron production rate using the GEANT4 numerical model, then estimate the current production and possible chemical pathways which could be useful for supporting biological activity on Mars, Europa and Enceladus. The concept of RHZ provides a novel framework for understanding the potential for life in high-radiation environments. By combining energy deposition calculations with the energy requirements of microbial cells, we have defined the RHZ for Mars, Europa and Enceladus. These zones represent the regions where radiolysis-driven energy production is sufficient to sustain microbial metabolism. We find that bacterial cell density is highest in Enceladus, followed by Mars and Europa. We discuss the implications of these mechanisms for the habitability of such objects in the solar system and beyond.
We report the detection of a potential quasi-periodic signal with a period of $\sim$2 yr in the blazar ON 246, based on Fermi-LAT ($\gamma$-rays) and ASAS-SN (optical) observations spanning 11.5 yr (MJD 55932–60081). We applied various techniques to investigate periodic signatures in the light curves, including the Lomb-Scargle periodogram (LSP), weighted wavelet Z-transform (WWZ), and REDFIT. The significance of the signals detected in LSP and WWZ was assessed using two independent approaches: Monte Carlo simulations and red noise modelling. Our analysis revealed a dominant peak in the $\gamma$-ray and optical light curves, with a significance level exceeding 3$\sigma$ in both LSP and WWZ, consistently persisting throughout the observation period. Additionally, the REDFIT analysis confirmed the presence of a quasi-periodic signal at $\sim$0.00134 day$^{-1}$ with a 99$\%$ confidence threshold. To explain the observed quasi-periodic variations in $\gamma$-ray and optical emissions, we explored various potential physical mechanisms. Our analysis suggests that the detected periodicity could originate from a supermassive binary black hole (SMBBH) system or the jet-induced orbital motion within such a system. Based on variability characteristics, we estimated the black hole mass of ON 246. The study suggests that the mass lies within the range of approximately $(0.142 - 8.22) \times 10^9$ M$_{\odot}$.
Mass transport induced by group-forced subharmonic waves (infragravity waves) is investigated in the present study. A theoretical solution for subharmonic waves’ kinematic contributions to fourth-order mass transport and drift velocity has been proposed for any depth and bandwidth for the first time. This model is validated using particle-tracking simulations driven by the flow field generated by the SWASH. The subharmonic-induced mass transport solution is a weighted sum of the subharmonic velocity variance spectrum and velocity skewness bispectrum due to the triad-difference interaction among two primary and one subharmonic components. For narrow-banded waves with long wave group relative to depth, the weightings become independent of spectral components, and the solution is recovered in the time domain. Two mechanisms contributing to mass transport were identified: a forward drift resulting from self-interaction similar to Stokes drift, and a depth-decaying backward drift induced by negative subharmonic velocity skewness due to the anti-phase coupling between subharmonics and wave groups. For narrow-banded waves the forward transport surpasses the backward transport for kh< 0.72, where k is the short wave wavenumber and h is the water depth. For other waves, the critical kh for this phenomenon decreases with increasing wave period and bed slope and decreasing bandwidth. At greater depths or steeper bed slopes, near-surface backward transport predominates over forward transport; at shallower depths or gentler slopes, forward transport is dominant throughout the water column. Although smaller than Stokes transport by short waves, the subharmonic wave-induced mass transport can affect the long-term trajectory of a floating and suspended particle. This study provides the first evidence and insight for the influences of group-forced subharmonics on vertically varying mass transport from the ocean surface to seabed in coastal environments.
Convection in planetary environments is often modelled using stress-free boundary conditions, with diffusion-free geostrophic turbulence scalings frequently assumed. However, key questions remain about whether rotating convection with stress-free boundary conditions truly achieves the diffusion-free geostrophic turbulence regime. Here, we investigated the scaling behaviours of the Nusselt number ($Nu$), Reynolds number (${Re}$) and dimensionless convective length scale ($\ell /H$, where $H$ is the height of the domain) in rotating Rayleigh–Bénard convection under stress-free boundary conditions within a Boussinesq framework. Using direct numerical simulation data for Ekman number $Ek$ down to $5\times 10^{-8}$, Rayleigh number $Ra$ up to $5\times 10^{12}$, and Prandtl number $Pr = 1$, we show that the diffusion-free scaling of the heat transfer $Nu - 1 \sim Ra^{3/2}\, Pr^{-1/2}\, Ek^2$ alone does not necessarily imply that the flow is in a geostrophic turbulence regime. Under the stress-free conditions, ${Re}$ and $\ell /H$ deviate from the diffusion-free scalings, indicating a dependence on molecular diffusivity. We propose new non-diffusion-free scaling relations for this diffusion-free heat transfer regime with stress-free boundary conditions: $\ell /H \sim Ra^{1/8}\, Pr^{-1/8}\, Ek^{1/2}$ and ${Re} \sim Ra^{11/8}\, Pr^{-11/8}\, Ek^{3/2}$. Our findings highlight the need to assess both thermal and dynamic characteristics to confirm geostrophic turbulence.
In turbulent pipe flows, drag-reducing polymers are commonly used to reduce skin-friction drag; however, predicting this reduction in industry applications, such as crude oil pipelines, remains challenging. The skin-friction coefficient ($C_f$) of polymer drag-reduced turbulent pipe flows can be related to three dimensionless parameters: the solvent Reynolds number ($Re_s$), the Weissenberg number ($Wi$) and the ratio of solvent viscosity ($\eta _s$) to zero-shear-rate viscosity ($\eta _0$), denoted as $\beta$. The function that relates these four dimensionless numbers was determined using experiments of various pipe diameters ($D$), flow velocities ($U$) and drag-reducing polyacrylamide solutions. The experiments included measurements of streamwise pressure drop ($\Delta P$) for determining $C_f$, and measurements of shear viscosity ($\eta$) and elastic relaxation time ($\lambda$). This experimental campaign involved 156 flow conditions, each characterised by distinct values for $C_f$, $Re_s$, $Wi$ and $\beta$. Experimental results demonstrated good agreement with the relationship: $C_f^{-1/2} = \widehat {A}\log _{10}(Re_sC_f^{1/2})+\widehat {B}$, where $\widehat {A} = 27.6(Wi \beta )^{0.346}$ and $\widehat {B} = 122/15-58.9(Wi \beta )^{0.346}$. Based on this relationship, onset and maximum drag reduction are predicted to occur when $Wi \beta$ equals $3.76 \times 10^{-3}$ and $3.40 \times 10^{-1}$, respectively. This function can predict $C_f$ of dilute polyacrylamide solutions based on predefined parameters (bulk velocity, pipe diameter, density, solvent viscosity) and two measurable rheological properties of the solution (shear viscosity and elastic relaxation time) with an accuracy of $\pm 9.36$ %.
Turbulence closures are essential for predictive fluid flow simulations in both natural and engineering systems. While machine learning offers promising avenues, existing data-driven turbulence models often fail to generalise beyond their training datasets. This study identifies the root cause of this limitation as the conflation of generalisable flow physics and dataset-specific behaviours. We address this challenge using symbolic regression, which yields interpretable, white-box expressions. By decomposing the learned corrections into inner-layer, outer-layer and pressure-gradient components, we isolate universal physics from flow-specific features. The model is trained progressively using high-fidelity datasets for plane channel flows, zero-pressure-gradient turbulent boundary layers (ZPGTBLs), and adverse pressure-gradient turbulent boundary layers (PGTBLs). For example, direct application of a model trained on channel flow data to ZPGTBLs results in incorrect skin friction predictions. However, when only the generalisable inner-layer component is retained and combined with an outer-layer correction specific to ZPGTBLs, predictions improve significantly. Similarly, a pressure-gradient correction derived from PGTBL data enables accurate modelling of aerofoil flows with both favourable and adverse pressure gradients. The resulting symbolic corrections are compact, interpretable, and generalise across configurations – including unseen geometries such as aerofoils and Reynolds numbers outside the training set. The models outperform baseline Reynolds-averaged Navier–Stokes closures (e.g. the Spalart–Allmaras and shear stress transport models) in both a priori and a posteriori tests. These results demonstrate that explicit identification and retention of generalisable components is key to overcoming the generalisation challenge in machine-learned turbulence closures.
Compressible jets impinging on a perpendicular surface can produce high-intensity, discrete-frequency tones. The character of these tones is a function of nozzle shape, jet Mach number, impingement-plate geometry, and the distance between nozzle and plate. Though it has long been recognised that these tones are associated with a resonance cycle, the exact mechanism by which they are generated has remained a topic of some debate. In this work, we present evidence for a number of distinct tone-generation mechanisms, reconciling some of the different findings of prior authors. We demonstrate that the upstream-propagating waves that close resonance can be confined within the jet, or external to it. These waves can be either weak and relatively linear, or strong and nonlinear from their inception. The waves can undergo coalescence or merging, and in some configurations, pairs of waves rather than singletons appear. We discuss both historical and new evidence for multiple distinct processes by which upstream-propagating waves are produced: direct vortex sound, shock leakage, wall-jet-boundary fluctuations, and wall-jet shocklets. We link these various mechanisms to the disparate collection of upstream-propagating waves observed in the data. We also demonstrate that multiple mechanisms can be provoked by a single vortex, providing an explanation as to why sometimes pairs of waves or merging waves are observed. Through this body of work, we demonstrate that rather than being in opposition, the various pieces of past research on this topic were simply identifying different mechanisms that can support resonance.
The paper by Pružina et al. (2025) J. Fluid Mech. 1009, sheds new light on the physical processes responsible for the formation of distinct layers in double-diffusive convection. Towards this end, it discusses direct numerical simulation results within the framework of sorted buoyancy coordinates. In particular, it demonstrates that the eddy diffusivity is negative everywhere, including in the interior of the well-mixed layers. This approach holds promise for analysing other, closely related, flow configurations that give rise to the emergence of pronounced layering features.
Based on the long-running Probability Theory course at the Sapienza University of Rome, this book offers a fresh and in-depth approach to probability and statistics, while remaining intuitive and accessible in style. The fundamentals of probability theory are elegantly presented, supported by numerous examples and illustrations, and modern applications are later introduced giving readers an appreciation of current research topics. The text covers distribution functions, statistical inference and data analysis, and more advanced methods including Markov chains and Poisson processes, widely used in dynamical systems and data science research. The concluding section, 'Entropy, Probability and Statistical Mechanics' unites key concepts from the text with the authors' impressive research experience, to provide a clear illustration of these powerful statistical tools in action. Ideal for students and researchers in the quantitative sciences this book provides an authoritative account of probability theory, written by leading researchers in the field.
This chapter gives a brief overview of observational astronomy, using optical instruments and other wavelengths. We present a general formula for the increase in the limiting magnitude resulting from an increased telescope aperture. For light of particular wavelength, the diffraction from a telescope with a specific diameter sets a fundamental limit to the smallest possible angular separation that can be resolved.
The tendency for conservation of angular momentum of a gravitationally collapsing cloud to form a disk gives rise to the disk in our own galaxy, the Milky Way. We explore the main components, including the disk, bulge and halo. Studies of galaxy rotation curves lead us to the existence of "dark matter," the nature of which is unknown but is detectable through its gravitational interactions with normal, baryonic matter. We finish by exploring the super-massive black hole at the Milky Way’s center.
In reality stars are not perfect blackbodies, and so their emitted spectra don’t depend solely on temperature, but instead contain detailed signatures of key physical properties like elemental composition. For atoms in a gas, the ability to absorb, scatter and emit light can likewise depend on the wavelength, sometimes quite sharply. We find that the discrete energies levels associated with atoms of different elements are quite distinct. We introduce the stellar spectral classes (OBAFGKM).
This chapter explores what is known as the Cosmic Microwave Background (CMB), what it is, how it was discovered and our recent efforts to measure and map it. In general, the analysis finds remarkably good overall agreement with predictions of the now-standard "Lambda CDM" model of a universe, in which there is both cold dark matter (CDM) to spur structure formation, as well as dark energy acceleration that is well-represented by a cosmological constant, Lambda. From this we can infer 13.8 Gyr for the age of the universe
Stars generally form in clusters from the gravitational contraction of a dense, cold giant molecular cloud. We explore the critical requirement for such a contraction, known as the Jeans criterion, and the factors that affect the star formation rates and the initial mass function in star clusters and galaxies. We finish by looking at how the conservation of angular momentum can lead to proto-stellar disks, with important implications for forming planets.
The disk formation process of the previous chapter forms the basis for the "Nebular Model" for the formation of planetary systems, including our own solar system. As a proto-stellar cloud collapses under the pull of its own gravity, conservation of its initial angular momentum leads naturally to formation of an orbiting disk, which surrounds the central core mass that forms the developing star. We then explore the "ice line" between inner rocky dwarf planets and outer gas giants.
This chapter explores observations and properties of quasars, which were first observed in the 1960s as point-like sources that emit over a wide range of energies from the radio through the IR, visible, UV and even extending to the X-ray and gamma-rays. They are now known to be a type of active galactic nucleus thought to be the result of matter accreting onto a super-massive black hole (SMBH) at the center of the host galaxy.
Dot array deposition through electrohydrodynamic (EHD) printing is widely used for high resolution and material utilization advantages. However, the conventional printing method is subject to a printing frequency limit known as the capillary frequency of the meniscus oscillation, where the jet directly contacts the substrate. This makes the printing frequency of EHD printing maintain at a low level and that is difficult to improve. In this work, a method for high-frequency EHD printing through continuous pinch-off is proposed. The characteristic frequency is broken through. A model is established to reveal the printing mechanism by combining the Poisson–Nernst–Planck equation and the phase field method. The unreal charge leakage is prevented by constructing a transition function for the fluid’s properties. The stability of the Taylor cone’s deformation and the droplets’ generation is studied. The measurement criterion for printing frequency is determined. The suitable printing height that can prevent the jet from directly contacting the substrate is obtained by investigating its influence on the printing states and frequency. The phase diagram considering the liquid’s conductivity and viscosity is presented to distinguish whether the printing is based on the end-pinching or Rayleigh–Plateau instability. The influence of the conductivity, viscosity, flow rate and printing voltage on the printing frequencies is studied quantitatively. Finally, scaling laws for printing frequency are proposed by theoretical analyses and summarizing the numerical data. This work could be beneficial for further enhancing the printing frequency of EHD printing.
It turns out that stellar binary (and even triple and quadruple) systems are quite common. In Chapter 10 we show how we can infer the masses of stars through the study of stellar binary systems. For some systems, where the inclination of orbits can be determined unambiguously, we can infer the masses of the stellar components, as well as the distance to the system. Together with the observed apparent magnitudes, this also gives the associated luminosities of their component stars.