Skip to main content Accessibility help

Expected sizes of Poisson–Delaunay mosaics and their discrete Morse functions

  • Herbert Edelsbrunner (a1), Anton Nikitenko (a1) and Matthias Reitzner (a2)


Mapping every simplex in the Delaunay mosaic of a discrete point set to the radius of the smallest empty circumsphere gives a generalized discrete Morse function. Choosing the points from a Poisson point process in ℝ n , we study the expected number of simplices in the Delaunay mosaic as well as the expected number of critical simplices and nonsingular intervals in the corresponding generalized discrete gradient. Observing connections with other probabilistic models, we obtain precise expressions for the expected numbers in low dimensions. In particular, we obtain the expected numbers of simplices in the Poisson–Delaunay mosaic in dimensions n ≤ 4.


Corresponding author

* Postal address: IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
** Email address:
*** Email address:
**** Postal address: Mathematics Department, University of Osnabrück, Albrechtstrasse 28a, 49076 Osnabrück, Germany. Email address:


Hide All
[1] Bauer, U. and Edelsbrunner, H. (2017). The Morse theory of Čech and Delaunay complexes. Trans. Amer. Math. Soc. 369, 37413762.
[2] Baumstark, V. and Last, G. (2009). Gamma distributions for stationary Poisson flat processes. Adv. Appl. Prob. 41, 911939.
[3] Bobrowski, O. and Adler, R. J. (2014). Distance functions, critical points, and the topology of random Čech complexes. Homology Homotopy Appl. 16, 311344.
[4] Bobrowski, O. and Weinberger, S. (2017). On the vanishing of homology in random Čech complexes. Random Structures Algorithms 51, 1451.
[5] Bobrowski, O., Kahle, M. and Skraba, P. (2016). Maximally persistent cycles in random geometric complexes. To appear in Ann. Appl. Prob.
[6] Carlsson, G. (2009). Topology and data. Bull. Amer. Math. Soc. (N.S.) 46, 255308.
[7] Chenavier, N. (2014). A general study of extremes of stationary tessellations with applications. Stoch. Process. Appl. 124, 29172953.
[8] Decreusefond, L., Ferraz, E., Randriambololona, H. and Vergne, A. (2014). Simplicial homology of random configurations. Adv. Appl. Prob. 46, 325347.
[9] Dey, T. K. (2007). Curve and Surface Reconstruction. Algorithms with Mathematical Analysis. Cambridge University Press.
[10] Drton, M., Massam, H. and Olkin, I. (2008). Moments of minors of Wishart matrices. Ann. Statist. 36, 22612283.
[11] Edelsbrunner, H. (2001). Geometry and Topology for Mesh Generation. Cambridge University Press.
[12] Edelsbrunner, H. (2003). Surface reconstruction by wrapping finite sets in space. In Discrete and Computational Geometry, Springer, Berlin, pp. 379404.
[13] Edelsbrunner, H. and Harer, J. L. (2010). Computational Topology: An Introduction. American Mathematical Society, Providence, RI.
[14] Edelsbrunner, H. and Mücke, E. P. (1994). Three-dimensional alpha shapes. ACM Trans. Graphics 13, 4372.
[15] Forman, R. (1998). Morse theory for cell complexes. Adv. Math. 134, 90145.
[16] Freij, R. (2009). Equivariant discrete Morse theory. Discrete Math. 309, 38213829.
[17] Kahle, M. (2011). Random geometric complexes. Discrete Comput. Geom. 45, 553573.
[18] Kahle, M. (2014). Topology of random simplicial complexes: a survey. In Algebraic Topology: Applications and New Directions (Contemp. Math. 620), American Mathematical Society, Providence, RI, pp. 201222.
[19] Kingman, J. F. C. (1993). Poisson Processes. Oxford University Press.
[20] Miles, R. E. (1969). Poisson flats in Euclidean spaces. I. A finite number of random uniform flats. Adv. Appl. Prob. 1, 211237.
[21] Miles, R. E. (1970). On the homogeneous planar Poisson point process. Math. Biosci. 6, 85127.
[22] Miles, R. E. (1971). Isotropic random simplices. Adv. Appl. Prob. 3, 353382.
[23] Miles, R. E. (1974). A synopsis of 'Poisson flats in Euclidean spaces'. In Stochastic Geometry, eds E. F. Harding and D. G. Kendall, John Wiley, New York, pp. 202227.
[24] Møller, J. (1989). Random tessellations in ℝ d . Adv. Appl. Prob 21, 3773.
[25] Olver, F. W. J. (1997). Asymptotics and Special Functions. A. K. Peters, Wellesley, MA.
[26] Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.
[27] Wendel, J. G. (1962). A problem in geometric probability. Math. Scand. 11, 109111.


MSC classification

Related content

Powered by UNSILO

Expected sizes of Poisson–Delaunay mosaics and their discrete Morse functions

  • Herbert Edelsbrunner (a1), Anton Nikitenko (a1) and Matthias Reitzner (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.