Skip to main content Accessibility help

Limit theorems for the zig-zag process

  • Joris Bierkens (a1) and Andrew Duncan (a2)


Markov chain Monte Carlo (MCMC) methods provide an essential tool in statistics for sampling from complex probability distributions. While the standard approach to MCMC involves constructing discrete-time reversible Markov chains whose transition kernel is obtained via the Metropolis–Hastings algorithm, there has been recent interest in alternative schemes based on piecewise deterministic Markov processes (PDMPs). One such approach is based on the zig-zag process, introduced in Bierkens and Roberts (2016), which proved to provide a highly scalable sampling scheme for sampling in the big data regime; see Bierkens et al. (2016). In this paper we study the performance of the zig-zag sampler, focusing on the one-dimensional case. In particular, we identify conditions under which a central limit theorem holds and characterise the asymptotic variance. Moreover, we study the influence of the switching rate on the diffusivity of the zig-zag process by identifying a diffusion limit as the switching rate tends to ∞. Based on our results we compare the performance of the zig-zag sampler to existing Monte Carlo methods, both analytically and through simulations.


Corresponding author

* Current address: Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD, Delft, The Netherlands. Email address:
** Current address: School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, UK.


Hide All
[1] Azaïs, R., Bardet, J.-B., Génadot, A., Krell, N. and Zitt, P.-A. (2014). Piecewise deterministic Markov process—recent results. ESAIM: Proc. 44, 276290.
[2] Bierkens, J. and Roberts, G. (2016). A piecewise deterministic scaling limit of lifted Metropolis–Hastings in the Curie–Weiss model. Ann. Appl. Prob. 27, 846882.
[3] Bierkens, J., Fearnhead, P. and Roberts, G. (2016). The Zig-Zag process and super-efficient sampling for Bayesian analysis of big data. Preprint. Available at
[4] Bouchard-Côté, A., Vollmer, S. J. and Doucet, A. (2017). The bouncy particle sampler: a non-reversible rejection-free Markov chain Monte Carlo method. To appear in J. Amer. Statist. Assoc. Available at
[5] Cattiaux, P., Chafaï, D. and Guillin, A. (2012). Central limit theorems for additive functionals of ergodic Markov diffusions processes. ALEA Lat. Am. J. Prob. Math. Statist. 9, 139.
[6] Chen, T.-L. and Hwang, C.-R. (2013). Accelerating reversible Markov chains. Statist. Prob. Lett. 83, 19561962.
[7] Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. With discussion. J. Roy. Statist. Soc. B 46, 353388.
[8] Duane, S., Kennedy, A. D., Pendleton, B. J. and Roweth, D. (1987). Hybrid Monte Carlo. Phys. Lett. B 195, 216222.
[9] Duncan, A. B., Lelièvre, T. and Pavliotis, G. A. (2016). Variance reduction using nonreversible Langevin samplers. J. Statist. Phys. 163, 457491.
[10] Durrett, R. (1996). Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont, CA.
[11] Ethier, S. N. and Kurtz, T. G. (2005). Markov Processes. John Wiley, New York.
[12] Fontbona, J., Guérin, H. and Malrieu, F. (2012). Quantitative estimates for the long-time behavior of an ergodic variant of the telegraph process. Adv. Appl. Prob. 44, 977994.
[13] Fontbona, J., Guérin, H. and Malrieu, F. (2016). Long time behavior of telegraph processes under convex potentials. Stoch. Process. Appl. 126, 30773101.
[14] Glynn, P. W. and Meyn, S. P. (1996). A Liapounov bound for solutions of the Poisson equation. Ann. Prob. 24, 916931.
[15] Hastings, W. K. (1970). Monte carlo sampling methods using Markov chains and their applications. Biometrika 57, 97109.
[16] Hwang, C.-R., Hwang-Ma, S.-Y. and Sheu, S. J. (1993). Accelerating gaussian diffusions. Ann. Appl. Prob. 3, 897913.
[17] Jarner, S. F. and Roberts, G. O. (2007). Convergence of heavy-tailed Monte Carlo Markov chain algorithms. Scand. J. Statist. 34, 781815.
[18] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.
[19] Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104, 119.
[20] Kolmogorov, A. N. and Fomin, S. V. (1975). Introductory Real Analysis. Dover, New York.
[21] Komorowski, T., Landim, C. and Olla, S. (2012). Fluctuations in Markov Processes (Fund. Principles Math. Sci. 345). Springer, Heidelberg. 491pp.
[22] Lelièvre, T., Nier, F. and Pavliotis, G. A. (2013). Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion. J. Statist. Phys. 152, 237274.
[23] Lewis, P. A. and Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. Quart. 26, 403413.
[24] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 10871092.
[25] Meyn, S. P. and Tweedie, R. L. (1993). Stability of Markovian processes II: Continuous-time processes and sampled chains. Adv. Appl. Prob. 25, 487517.
[26] Monmarché, P. (2015). On H 1 and entropic convergence for contractive PDMP. Electron. J. Prob. 20, 130.
[27] Monmarché, P. (2016). Piecewise deterministic simulated annealing. ALEA Lat. Am. J. Prob. Math. Statist. 13, 357398.
[28] Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo, Chapman and Hall, Boca Raton, FL, pp. 113162.
[29] Ottobre, M., Pillai, N. S., Pinski, F. J. and Stuart, A. M. (2016). A function space HMC algorithm with second order Langevin diffusion limit. Bernoulli 22, 60106.
[30] Peters, E. A. J. F. and de With, G. (2012). Rejection-free Monte Carlo sampling for general potentials. Phys. Rev. E 85, 026703.
[31] Rey-Bellet, L. and Spiliopoulos, K. (2015). Irreversible Langevin samplers and variance reduction: a large deviations approach. Nonlinearity 28, 20812103.
[32] Rey-Bellet, L. and Spiliopoulos, K. (2015). Variance reduction for irreversible Langevin samplers and diffusion on graphs. Electron. Commun. Prob. 20, 16pp.
[33] Rey-Bellet, L. and Spiliopoulos, K. (2016). Improving the convergence of reversible samplers. J. Statist. Phys. 164, 472494.
[34] Sun, Y., Schmidhuber, J. and Gomez, F. J. (2010). Improving the asymptotic performance of Markov chain Monte–Carlo by inserting vortices. Adv. Neural Inf. Process. Syst. 23, 22352243.
[35] Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin dynamics. Proc. 28th Int. Conf. Machine Learning, ICML-11, 681688.


MSC classification

Related content

Powered by UNSILO

Limit theorems for the zig-zag process

  • Joris Bierkens (a1) and Andrew Duncan (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.