Hostname: page-component-cb9f654ff-9knnw Total loading time: 0 Render date: 2025-09-09T04:29:31.408Z Has data issue: false hasContentIssue false

Well-posedness and averaging principle for non-Gaussian McKean–Vlasov stochastic differential equations with locally Lipschitz coefficients

Published online by Cambridge University Press:  09 September 2025

Ying Chao*
Affiliation:
Xi’an Jiaotong University
Jinqiao Duan*
Affiliation:
Great Bay University
Ting Gao*
Affiliation:
Huazhong University of Science and Technology
Pingyuan Wei*
Affiliation:
Southeast University and Peking University
*
*Postal address: School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China. Email: yingchao1993@xjtu.edu.cn
**Postal address: Department of Mathematics and Guangdong Provincial Key Laboratory of Mathematical and Neural Dynamical Systems, Great Bay University, Dongguan, Guangdong 523000, China. Email: duan@gbu.edu.cn
***Postal address: School of Mathematics and Statistics and Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China. Email: tgao0716@hust.edu.cn
****Postal address: School of Mathematics, Southeast University, Nanjing 211189, China; Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China. Email: weipingyuan@pku.edu.cn

Abstract

In this paper, we investigate a class of McKean–Vlasov stochastic differential equations (SDEs) with Lévy-type perturbations. We first establish the existence and uniqueness theorem for the solutions of the McKean–Vlasov SDEs by utilizing an Eulerlike approximation. Then, under suitable conditions, we demonstrate that the solutions of the McKean–Vlasov SDEs can be approximated by the solutions of the associated averaged McKean–Vlasov SDEs in the sense of mean square convergence. In contrast to existing work, a novel feature of this study is the use of a much weaker condition, locally Lipschitz continuity in the state variables, allowing for possibly superlinearly growing drift, while maintaining linearly growing diffusion and jump coefficients. Therefore, our results apply to a broader class of McKean–Vlasov SDEs.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Applebaum, D. (2009). Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge.10.1017/CBO9780511809781CrossRefGoogle Scholar
Bahlali, K., Mezerdi, M. A., and Mezerdi, B. (2020). Stability of McKean–Vlasov stochastic differential equations and applications. Stoch. Dyn. 20(01), 2050007.10.1142/S0219493720500070CrossRefGoogle Scholar
Bogachev, V. I. (2007). Measure Theory. Vol. I, II. Springer, Berlin.Google Scholar
Brezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York.10.1007/978-0-387-70914-7CrossRefGoogle Scholar
Carmona, R. and Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications II. Springer, Cham.10.1007/978-3-319-56436-4CrossRefGoogle Scholar
Cavallazzi, T. (2023). Well–posedness and propagation of chaos for Lévy–driven McKean–Vlasov SDEs under Lipschitz assumptions. Arxiv:2301.08594.Google Scholar
Dareiotis, K., Kumar, C., and Sabanis, S. (2016). On tamed Euler approximations of SDEs driven by Lévy noise with applications to delay equations. SIAM J. Numer. Anal. 54(3), 18401872.10.1137/151004872CrossRefGoogle Scholar
Dellacherie, C. and Meyer, P. A. (2018). Probabilities and Potential B. North-Holland, Amsterdam.Google Scholar
Ding, X. and Qiao, H. (2021). Euler–Maruyama approximations for stochastic McKean–Vlasov equations with non-Lipschitz coefficients. J. Theoret. Probab. 34(3), 14081425.10.1007/s10959-020-01041-wCrossRefGoogle Scholar
Dos Reis, G., Engelhardt, S. and Smith, G. (2022). Simulation of McKean–Vlasov SDEs with super-linear growth. IMA J. Numer. Anal. 42(1), 874922.10.1093/imanum/draa099CrossRefGoogle Scholar
Duan, J. (2015). An Introduction to Stochastic Dynamics. Cambridge University Press, Cambridge.Google Scholar
Frikha, N., Konakov, V. and Menozzi, S. (2021). Well-posedness of some non-linear stable driven SDEs. Discrete Contin. Dyn. Syst. 42(2), 849898.10.3934/dcds.2020302CrossRefGoogle Scholar
Frikha, N. and Li, L. (2021). Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs. Stochastic Process. Appl. 132, 76107.10.1016/j.spa.2020.10.002CrossRefGoogle Scholar
Graham, C. (1992). Nonlinear diffusion with jumps. Ann. Inst. H. Poincaré Probab. Statist. 28(3), 393402.Google Scholar
Hao, T. and Li, J. (2016). Mean-field SDEs with jumps and nonlocal integral-PDEs. Nonlinear Diff. Equ. Appl. 23(2), 151.Google Scholar
Hong, W., Hu, S. and Liu, W. (2022). Mckean-Vlasov SDEs and SPDEs with locally monotone coefficients. ArXiv:2205.04043.Google Scholar
Jourdain, B., Méléard, S. and Woyczynski, W. (2008). Nonlinear SDEs driven by Lévy processes and related PDEs. ALEA Lat. Am. J. Probab. Math. Stat. 4, 129.Google Scholar
Kac, K. (1956). Foundations of kinetic theory. Proceedings of The third Berkeley Symposium on Mathematical Statistics and Probability, 171197.10.1525/9780520350694-012CrossRefGoogle Scholar
Khasminskii, R. (1968). On the averaging principle for stochastic differential Itô equation. Kibernetika 4(3), 260279.Google Scholar
Kloeden, P. E. and Lorenz, T. (2010). Stochastic differential equations with nonlocal sample dependence. Stochastic Anal. Appl. 28(6), 937945.10.1080/07362994.2010.515194CrossRefGoogle Scholar
Kühn, F. and Schilling, R. L. (2023). Maximal inequalities and some applications. Probab. Surv. 20, 382485.10.1214/23-PS17CrossRefGoogle Scholar
Li, Y., Mao, X., Song, Q., Wu, F. and Yin, G. (2023). Strong convergence of Euler–Maruyama schemes for McKean–Vlasov stochastic differential equations under local Lipschitz conditions of state variables. IMA J. Numer. Anal. 43(2), 10011035.10.1093/imanum/drab107CrossRefGoogle Scholar
Liu, W., Song, Y., Zhai, J. and Zhang, T. (2023). Large and moderate deviation principles for McKean-Vlasov SDEs with jumps. Potential Anal. 59(3), 11411190.10.1007/s11118-022-10005-0CrossRefGoogle Scholar
Ma, S. and Kang, Y. (2019). Periodic averaging method for impulsive stochastic differential equations with Lévy noise. Appl. Math. Lett. 93, 9197.10.1016/j.aml.2019.01.040CrossRefGoogle Scholar
Majka, M. B. (2020). A note on existence of global solutions and invariant measures for jump sdes with locally one-sided Lipschitz drift. Probab. Theory Stoch. Model. 40(1), 3755.Google Scholar
Mao, X. (2007). Stochastic Differential Equations and Applications, Horwood, Chichester.Google Scholar
McKean, H. P. (1966). A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. 56(6), 19071911.10.1073/pnas.56.6.1907CrossRefGoogle Scholar
Mehri, S., Scheutzow, M., Stannat, W. and Zangeneh, B. Z. (2020). Propagation of chaos for stochastic spatially structured neuronal networks with delay driven by jump diffusions. Ann. Appl. Probab. 30(1), 175207.10.1214/19-AAP1499CrossRefGoogle Scholar
Mikulevicius, R. and Pragarauskas, H. (2012). On $L_p$ -estimates of some singular integrals related to jump processes. SIAM J. Math. Anal. 44(4), 23052328.10.1137/110844854CrossRefGoogle Scholar
Neelima, S. B., Kumar, C., Dos Reis, G. and Reisinger, C. (2020). Well-posedness and tamed Euler schemes for McKean-Vlasov equations driven by Lévy noise. ArXiv:2010.08585.Google Scholar
Novikov, A. A. (1975). On discontinuous martingales. Theor. Probability Appl. 20(1), 1126.10.1137/1120002CrossRefGoogle Scholar
Pavliotis, G. A., and Andrew, S. (2008) Multiscale Methods: Averaging and Homogenization. Springer, New York.Google Scholar
Pei, B., Xu, Y. and Wu, J. (2020). Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Appl. Math. Lett. 100, 106006.10.1016/j.aml.2019.106006CrossRefGoogle Scholar
Protter, P. (2009). Stochastic Integration and Differential Equations, 2nd edn. Springer, New York.Google Scholar
Sato, K.-i. (2013). Lévy processes and infinitely divisible distributions, Revised edn. Cambridge University Press, Cambridge.Google Scholar
Shen, G., Song, J. and Wu, J. (2022). Stochastic averaging principle for distribution dependent stochastic differential equations. Appl. Math. Lett. 125, 107761.10.1016/j.aml.2021.107761CrossRefGoogle Scholar
Shen, G., Xiang, J. and Wu, J. (2022). Averaging principle for distribution dependent stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. J. Differ. Equ. 321, 381414.10.1016/j.jde.2022.03.015CrossRefGoogle Scholar
Shiryaev, A. N. (1989). Probability. Spring, New York.Google Scholar
Sznitman, A. S. (1991). Topics in propagation of chaos. Vol. 1464, Lecture Notes in Mathematics, 165–251. Spring, Berlin.10.1007/BFb0085169CrossRefGoogle Scholar
Wang, F. (2018). Distribution dependent SDEs for Landau type equations. Stochastic Process. Appl. 128(2), 595621.10.1016/j.spa.2017.05.006CrossRefGoogle Scholar
Xu, J., Liu, J. and Miao, Y. (2021). Strong averaging principle for two-time-scale stochastic McKean-Vlasov equations. Appl. Math. Opt. 84(1), 837867.10.1007/s00245-021-09787-3CrossRefGoogle Scholar
Xu, Y., Duan, J. and Xu, W. (2011). An averaging principle for stochastic dynamical systems with Lévy noise. Phys. D 240(17), 13951401.10.1016/j.physd.2011.06.001CrossRefGoogle Scholar