No CrossRef data available.
Published online by Cambridge University Press: 09 September 2025
In this paper, we investigate a class of McKean–Vlasov stochastic differential equations (SDEs) with Lévy-type perturbations. We first establish the existence and uniqueness theorem for the solutions of the McKean–Vlasov SDEs by utilizing an Eulerlike approximation. Then, under suitable conditions, we demonstrate that the solutions of the McKean–Vlasov SDEs can be approximated by the solutions of the associated averaged McKean–Vlasov SDEs in the sense of mean square convergence. In contrast to existing work, a novel feature of this study is the use of a much weaker condition, locally Lipschitz continuity in the state variables, allowing for possibly superlinearly growing drift, while maintaining linearly growing diffusion and jump coefficients. Therefore, our results apply to a broader class of McKean–Vlasov SDEs.