Skip to main content Accessibility help
×
Home

Are we predictive engines? Perils, prospects, and the puzzle of the porous perceiver

Published online by Cambridge University Press:  10 May 2013

Andy Clark
Affiliation:
School of Philosophy, Psychology, and Language Sciences, University of Edinburgh, Edinburgh EH12 5AY, Scotland, United Kingdom. andy.clark@ed.ac.uk http://www.philosophy.ed.ac.uk/people/full-academic/andy-clark.html
Corresponding
E-mail address:

Abstract

The target article sketched and explored a mechanism (action-oriented predictive processing) most plausibly associated with core forms of cortical processing. In assessing the attractions and pitfalls of the proposal we should keep that element distinct from larger, though interlocking, issues concerning the nature of adaptive organization in general.

Type
Authors' Response
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Barrett, L. F. & Bar, M. (2009) See it with feeling: Affective predictions during object perception. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364(1521):1325–34.CrossRefGoogle ScholarPubMed
Bengio, Y. (2009) Learning deep architectures for AI. Foundations and Trends in Machine Learning 2(1):1127.CrossRefGoogle Scholar
Brayanov, J. B. & Smith, M. A. (2010) Bayesian and “anti-Bayesian” biases in sensory integration for action and perception in the size–weight illusion. Journal of Neurophysiology 103(3):1518–31.CrossRefGoogle ScholarPubMed
Carrasco, M., Ling, S. & Read, S. (2004) Attention alters appearance. Nature Neuroscience 7:308–13.CrossRefGoogle ScholarPubMed
Churchland, P. M. (1989) The neurocomputational perspective. MIT/Bradford Books.Google Scholar
Churchland, P. M. (2012) Plato's camera: How the physical brain captures a landscape of abstract universals. MIT Press.Google Scholar
Clark, A. (1989) Microcognition: Philosophy, cognitive science and parallel distributed processing. MIT Press/Bradford Books.Google Scholar
Clark, A. (1993) Minimal rationalism. Mind 102(408):587610.CrossRefGoogle Scholar
Clark, A. (2006a) Language, embodiment and the cognitive niche. Trends in Cognitive Sciences 10(8):370–74.CrossRefGoogle ScholarPubMed
Clark, A (2008) Supersizing the mind: Action, embodiment, and cognitive extension. Oxford University Press.CrossRefGoogle Scholar
Clark, A. (2012) Dreaming the whole cat: Generative models, predictive processing, and the enactivist conception of perceptual experience. Mind 121(483):753–71.CrossRefGoogle Scholar
Clark, A. (forthcoming) Perceiving as predicting, In: Perception and its modalities, ed. Mohan, M., Biggs, S. & Stokes, D.. Oxford University Press.Google Scholar
Clark, A. & Thornton, C. (1997) Trading spaces: Computation, representation, and the limits of uninformed learning. Behavioral and Brain Sciences 20(1):5766.CrossRefGoogle ScholarPubMed
Dayan, P., Hinton, G. E. & Neal, R. M. (1995) The Helmholtz machine. Neural Computation 7:889904.CrossRefGoogle ScholarPubMed
Dennett, D. C. (2009) Darwin's “Strange Inversion of Reasoning”. Proceedings of the National Academy of Sciences USA 106 (Suppl. 1):10061–65.CrossRefGoogle Scholar
den Ouden, H. E. M., Daunizeau, J., Roiser, J., Friston, K. J. & Stephan, K. E. (2010) Striatal prediction error modulates cortical coupling. Journal of Neuroscience 30:3210–19.CrossRefGoogle ScholarPubMed
den Ouden, H. E. M, Friston, K. J., Daw, N. D., McIntosh, A. R. & Stephan, K. E. (2009) A dual role for prediction error in associative learning. Cerebral Cortex 19:1175–85.CrossRefGoogle ScholarPubMed
Egner, T., Monti, J. M. & Summerfield, C. (2010) Expectation and surprise determine neural population responses in the ventral visual stream. Journal of Neuroscience 30(49):16601–608.CrossRefGoogle ScholarPubMed
Eliades, S. J. & Wang, X. (2008) Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature 453:1102–106.CrossRefGoogle ScholarPubMed
Feldman, H. & Friston, K. J. (2010) Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience 4:215. doi:10.3389/fnmuh.2010.00215.CrossRefGoogle ScholarPubMed
Friston, K. (2005) A theory of cortical responses. Philosophical Transactions of the Royal Society of London B: Biological Sciences 360(1456):815–36.CrossRefGoogle ScholarPubMed
Friston, K. (2011a) Embodied inference: Or I think therefore I am, if I am what I think. In: The implications of embodiment (Cognition and Communication), ed. Tschacher, W. & Bergomi, C., pp. 89125. Imprint Academic.Google Scholar
Friston, K. (2011b) What is optimal about motor control? Neuron 72:488–98.CrossRefGoogle ScholarPubMed
Friston, K., Adams, R. A., Perrinet, L. & Breakspear, M. (2012) Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology 3:151. doi: 10.3389/fpsyg.2012.00151.CrossRefGoogle ScholarPubMed
Friston, K. & Kiebel, S. (2009) Cortical circuits for perceptual inference. Neural Networks 22:1093–104.CrossRefGoogle ScholarPubMed
Frith, C. D. & Wentzer, T. S. (in press) Neural hermeneutics. In: Encyclopedia of philosophy and the social sciences, vol. 1, ed. Kaldis, B.. Sage.Google Scholar
Glimcher, P. (2010) Foundations of neuroeconomic analysis. Oxford University Press.CrossRefGoogle Scholar
Hinton, G. E. & Nair, V. (2006) Inferring motor programs from images of handwritten digits. In: Advances in neural information processing systems 18: Proceedings of the 2005 NIPS Conference, ed. Weiss, Y., Scholkopf, B. & Platt, J., pp. 515–22. MIT Press.Google Scholar
Hohwy, J. (2012) Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology 3:96, 114. doi: 10.3389/fpsyg.2012.00096.CrossRefGoogle ScholarPubMed
Hutchins, E. (1995) Cognition in the wild. MIT Press.Google Scholar
Kay, J. & Phillips, W. A. (2010) Coherent Infomax as a computational goal for neural systems. Bulletin of Mathematical Biology 73:344–72. doi: 10.1007/s11538-010-9564-x.CrossRefGoogle ScholarPubMed
Keller, G. B., Bonhoeffer, T. & Hubener, M. (2012) Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74:809–15.CrossRefGoogle ScholarPubMed
Kok, P., Rahnev, D., Jehee, J. F., Lau, H. C. & de Lange, F. P. (2011) Attention reverses the effect of prediction in silencing sensory signals. Cerebral Cortex 22:2197–206.CrossRefGoogle ScholarPubMed
Lee, D. & Wang, X.-J. (2009) Mechanisms for stochastic decision making in the primate frontal cortex: Single-neuron recording and circuit modeling. In: Neuroeconomics: Decision making and the brain, ed. Glimcher, P., Camerer, C., Fehr, E. & Poldrack, R., pp. 481501. Elsevier.CrossRefGoogle Scholar
Meyer, T. & Olson, C. R. (2011) Statistical learning of visual transitions in monkey inferotemporal cortex. Proceedings of the National Academy of Sciences USA 108:19401–406.CrossRefGoogle ScholarPubMed
Mumford, D. (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biological Cybernetics 66(3):241–51.CrossRefGoogle ScholarPubMed
Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P. & Woods, D. L. (2002) Shape perception reduces activity in human primary visual cortex. Proceedings of the National Academy of Sciences USA 99(23):15164–69.CrossRefGoogle ScholarPubMed
Olshausen, B. A. & Field, D. J. (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607609.CrossRefGoogle ScholarPubMed
Pfeifer, R., Lungarella, M., Sporns, O. & Kuniyoshi, Y. (2007) On the information theoretic implications of embodiment – principles and methods. Lecture Notes in Computer Science (LNCS), vol. 4850. Springer.Google Scholar
Phillips, W. A., Kay, J. & Smyth, D. (1995) The discovery of structure by multistream networks of local processors with contextual guidance. Network: Computation in Neural Systems 6:225–46.CrossRefGoogle Scholar
Phillips, W. A., von der Malsburg, C. & Singer, W. (2010) Dynamic coordination in brain and mind. In: Strüngmann Forum Report, vol. 5: Dynamic coordination in the brain: From neurons to mind, ed. von der Malsburg, C., Phillips, W. A. & Singer, W., Chapter 1, pp. 124. MIT Press.Google Scholar
Pickering, M. J. & Garrod, S. (2007) Do people use language production to make predictions during comprehension? Trends in Cognitive Sciences (11):105110.CrossRefGoogle ScholarPubMed
Posner, M. (1980) Orienting of attention. Quarterly Journal of Experimental Psychology 32:33.CrossRefGoogle ScholarPubMed
Reichert, D., Seriès, P. & Storkey, A. (2010) Hallucinations in Charles Bonnet Syndrome induced by homeostasis: A Deep Boltzmann Machine model. Advances in Neural Information Processing Systems 23:2020–28.Google Scholar
Roepstorff, A., Niewohner, J. & Beck, S. (2010) Enculturing brains through patterned practices. Neural Networks 23(8–9):1051–59.CrossRefGoogle ScholarPubMed
Salakhutdinov, R. & Hinton, G. E. (2009) Deep Boltzmann machines. Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 5, ed. D. van Dyk & M. Welling, pp. 448–55. The Journal of Machine Learning Research, published online, at http://jmlr.csail.mit.edu/proceedings/papers/v5/ Google Scholar
Schenk, T. & McIntosh, R. (2010) Do we have independent visual streams for perception and action? Cognitive Neuroscience 1:5278.CrossRefGoogle ScholarPubMed
Seth, A. K., Suzuki, K. & Critchley, H. D. (2011) An interoceptive predictive coding model of conscious presence. Frontiers in Psychology 2:395.Google ScholarPubMed
Stephan, K., Friston, K. & Frith, C. (2009) Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin 35(3):509–27.CrossRefGoogle ScholarPubMed
von der Malsburg, C., Phillips, W. A. & Singer, W., eds. (2010) Strungmann Forum Report, Vol. 5. Dynamic coordination in the brain: From neurons to mind. MIT Press.CrossRefGoogle Scholar
Wyart, V., Nobre, A. C. & Summerfield, C. (2012) Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. Proceedings of the National Academy of Sciences USA 109:3593–98.CrossRefGoogle ScholarPubMed
Zhu, Q. & Bingham, G. P. (2011) Human readiness to throw: The size-weight illusion is not an illusion when picking the best objects to throw. Evolution and Human Behavior 32(4):288–93.CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 159
Total number of PDF views: 175 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-pdn9z Total loading time: 1.649 Render date: 2021-01-21T13:07:19.145Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Are we predictive engines? Perils, prospects, and the puzzle of the porous perceiver
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Are we predictive engines? Perils, prospects, and the puzzle of the porous perceiver
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Are we predictive engines? Perils, prospects, and the puzzle of the porous perceiver
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *