Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-2qt69 Total loading time: 1.048 Render date: 2022-08-12T21:01:15.061Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Human path navigation in a three-dimensional world

Published online by Cambridge University Press:  08 October 2013

Michael Barnett-Cowan
Affiliation:
The Brain and Mind Institute, The University of Western Ontario, London, Ontario, N6A 5B7Canada. mbarnettcowan@gmail.comwww.sites.google.com/site/mbarnettcowan/
Heinrich H. Bülthoff
Affiliation:
Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany. hhb@tuebingen.mpg.dewww.kyb.mpg.de/~hhb Department of Brain and Cognitive Engineering, Korea University, Seoul, 136-713, Korea

Abstract

Jeffery et al. propose a non-uniform representation of three-dimensional space during navigation. Fittingly, we recently revealed asymmetries between horizontal and vertical path integration in humans. We agree that representing navigation in more than two dimensions increases computational load and suggest that tendencies to maintain upright head posture may help constrain computational processing, while distorting neural representation of three-dimensional navigation.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett-Cowan, M., Dyde, R. T. & Harris, L. R. (2005) Is an internal model of head orientation necessary for oculomotor control? Annals of the New York Academy of Sciences 1039:314–24.CrossRefGoogle ScholarPubMed
Barnett-Cowan, M., Fleming, R. W., Singh, M. & Bülthoff, H. H. (2011) Perceived object stability depends on multisensory estimates of gravity. PLoS ONE 6(4):e19289.CrossRefGoogle Scholar
Barnett-Cowan, M., Meilinger, T., Vidal, M., Teufel, H. & Bülthoff, H. H. (2012) MPI CyberMotion Simulator: Implementation of a novel motion simulator to investigate multisensory path integration in three dimensions. Journal of Visualized Experiments (63):e3436.CrossRefGoogle ScholarPubMed
Brodsky, M. C., Donahue, S. P., Vaphiades, M. & Brandt, T. (2006) Skew deviation revisited. Survey of Ophthalmology 51:105–28.CrossRefGoogle ScholarPubMed
Dyde, R. T., Jenkin, M. R. & Harris, L. R. (2006) The subjective visual vertical and the perceptual upright. Experimental Brain Research 173:612–22.CrossRefGoogle ScholarPubMed
European Aviation Safety Agency. (2006) EASA Annual Safety Review, 2006. EASA (European Aviation Safety Agency, Cologne, Germany).Google Scholar
Hayman, R., Verriotis, M. A., Jovalekic, A., Fenton, A. A. & Jeffery, K. J. (2011) Anisotropic encoding of three-dimensional space by place cells and grid cells. Nature Neuroscience 14(9):1182–88.CrossRefGoogle ScholarPubMed
Hengstenberg, R. (1991) Gaze control in the blowfly Calliphora: A multisensory, two-stage integration process. Seminars in Neuroscience 3(1):1929. Available at: http://www.sciencedirect.com/science/article/pii/104457659190063T.CrossRefGoogle Scholar
Kluzik, J., Horak, F. B. & Peterka, R. J. (2005) Differences in preferred reference frames for postural orientation shown by after-effects of stance on an inclined surface. Experimental Brain Research 162:474–89. Available at: http://link.springer.com/article/10.1007%2Fs00221-004-2124-6.CrossRefGoogle ScholarPubMed
Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W. & Fry, P. A. (1993) Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology: General 122:7391.CrossRefGoogle ScholarPubMed
MacNeilage, P. R., Banks, M. S., Berger, D. R. & Bülthoff, H. H. (2007) A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Experimental Brain Research 179:263–90.CrossRefGoogle ScholarPubMed
MacNeilage, P. R., Banks, M. S., DeAngelis, G. C. & Angelaki, D. E. (2010) Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates. The Journal of Neuroscience 30:9084–94.CrossRefGoogle ScholarPubMed
McIntyre, J., Zago, M., Berthoz, A. & Lacquaniti, F. (2001) Does the brain model Newton's laws? Nature Neuroscience 4:693–4.CrossRefGoogle ScholarPubMed
Mittelstaedt, H. (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–81.CrossRefGoogle ScholarPubMed
Schwabe, L. & Blanke, O. (2008) The vestibular component in out-of-body experiences: A computational approach. Frontiers in Human Neuroscience 2:17. Available at: http://www.frontiersin.org/human_neuroscience/10.3389/neuro.09.017.2008/abstract.CrossRefGoogle ScholarPubMed
Teufel, H. J., Nusseck, H.-G., Beykirch, K. A., Butler, J. S., Kerger, M. & Bülthoff, H. H. (2007) MPI motion simulator: Development and analysis of a novel motion simulator. In: Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head, South Carolina AIAA, 2007-6476. Available at: http://kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Teufel2007_4512%5B0%5D.pdf.Google Scholar
Wade, M. G. & Jones, G. (1997) The role of vision and spatial orientation in the maintenance of posture. Physical Therapy 77:619–28.CrossRefGoogle ScholarPubMed
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Human path navigation in a three-dimensional world
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Human path navigation in a three-dimensional world
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Human path navigation in a three-dimensional world
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *