Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T09:54:21.559Z Has data issue: false hasContentIssue false

The problem of conflicting reference frames when investigating three-dimensional space in surface-dwelling animals

Published online by Cambridge University Press:  08 October 2013

Francesco Savelli
Affiliation:
Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218. fsavelli@jhu.edujknierim@jhu.eduhttp://krieger.jhu.edu/mbi/knierimlab/
James J. Knierim
Affiliation:
Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218. fsavelli@jhu.edujknierim@jhu.eduhttp://krieger.jhu.edu/mbi/knierimlab/

Abstract

In a surface-dwelling animal like the rat, experimental strategies for investigating the hippocampal correlates of three-dimensional space appear inevitably complicated by the interplay of global versus local reference frames. We discuss the impact of the resulting confounds on present and future empirical analysis of the “bicoded map” hypothesis by Jeffery and colleagues.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boccara, C. N., Sargolini, F., Thoresen, V. H., Solstad, T., Witter, M. P., Moser, E. I. & Moser, M.-B. (2010) Grid cells in pre- and parasubiculum. Nature Neuroscience 13:987–94.Google Scholar
Derdikman, D., Whitlock, J. R., Tsao, A., Fyhn, M., Hafting, T., Moser, M. & Moser, E. I. (2009) Fragmentation of grid cell maps in a multicompartment environment. Nature Neuroscience 12(10):1325–32.Google Scholar
Hayman, R., Verriotis, M. A., Jovalekic, A., Fenton, A. A. & Jeffery, K. J. (2011) Anisotropic encoding of three-dimensional space by place cells and grid cells. Nature Neuroscience 14(9):1182–88.Google Scholar
Knierim, J. J. & Hamilton, D. A. (2011) Framing spatial cognition: Neural representations of proximal and distal frames of reference and their roles in navigation. Physiological Reviews 91:1245–79.Google Scholar
Knierim, J. J. & Rao, G. (2003) Distal landmarks and hippocampal place cells: Effects of relative translation versus rotation. Hippocampus 13:604–17.CrossRefGoogle ScholarPubMed
Lever, C., Burton, S., Jeewajee, A., O'Keefe, J. & Burgess, N. (2009) Boundary vector cells in the subiculum of the hippocampal formation. Journal of Neuroscience 29:9771–77.Google Scholar
Nitz, D. A. (2011) Path shape impacts the extent of CA1 pattern recurrence both within and across environments. Journal of Neurophysiology 105:1815–24.Google Scholar
O'Keefe, J. & Burgess, N. (1996) Geometric determinants of the place fields of hippocampal neurons. Nature 381:425–28.CrossRefGoogle ScholarPubMed
Savelli, F. & Knierim, J. J. (2012) Flexible framing of spatial representations in the hippocampal formation. Poster presented at the Society for Neuroscience Conference, New Orleans, LA, October 13–17, 2012. Poster No. 812.13.Google Scholar
Savelli, F., Yoganarasimha, D. & Knierim, J. J. (2008) Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18:1270–82.Google Scholar
Siegel, J. J., Neunuebel, J. P. & Knierim, J. J. (2007) Dominance of the proximal coordinate frame in determining the locations of hippocampal place cell activity during navigation. Journal of Neurophysiology 99:6076.Google Scholar
Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B. & Moser, E. I. (2008) Representation of geometric borders in the entorhinal cortex. Science 322:1865–68.Google Scholar
Yartsev, M. M. & Ulanovsky, N. (2013) Representation of three-dimensional space in the hippocampus of flying bats. Science 340:367–72.CrossRefGoogle ScholarPubMed