Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-c97xr Total loading time: 0.214 Render date: 2022-05-28T07:38:05.530Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Increasing resolution in the mechanisms of resolve

Published online by Cambridge University Press:  26 April 2021

Adam Bulley
Affiliation:
Department of Psychology, Harvard University, Cambridge, MA02138adam_bulley@fas.harvard.edu; http://adambulley.org/dls@wjh.harvard.edu; https://scholar.harvard.edu/schacterlab/home The University of Sydney, School of Psychology and Brain and Mind Centre, Sydney, NSW2050, Australia
Daniel L. Schacter
Affiliation:
Department of Psychology, Harvard University, Cambridge, MA02138adam_bulley@fas.harvard.edu; http://adambulley.org/dls@wjh.harvard.edu; https://scholar.harvard.edu/schacterlab/home

Abstract

Ainslie offers an encompassing and compelling account of willpower, although his big-picture view comes occasionally at the cost of low resolution. We comment on ambiguity in the metacognitive and prospective mechanisms of resolve implicated in recursive self-prediction. We hope to show both the necessity and promise of specifying testable cognitive mechanisms of willpower.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakkour, A., Palombo, D. J., Zylberberg, A., Kang, Y. H., Reid, A., Verfaellie, M., … Shohamy, D. (2019). The hippocampus supports deliberation during value-based decisions. eLife, 8, 128. https://doi.org/10.7554/elife.46080.CrossRefGoogle ScholarPubMed
Benoit, R. G., & Schacter, D. L. (2015). Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 450457. https://doi.org/10.1016/j.neuropsychologia.2015.06.034.CrossRefGoogle ScholarPubMed
Bulley, A., & Schacter, D. L. (2020). Deliberating trade-offs with the future. Nature Human Behaviour, 4, 238247. https://doi.org/https://doi.org/10.1038/s41562-020-0834-9.CrossRefGoogle ScholarPubMed
Irish, M., & Vatansever, D. (2020). Rethinking the episodic-semantic distinction from a gradient perspective. Current Opinion in Behavioral Sciences, 32, 4349. https://doi.org/10.1016/j.cobeha.2020.01.016.CrossRefGoogle Scholar
Kwan, D., Craver, C. F., Green, L., Myerson, J., Boyer, P., & Rosenbaum, R. S. (2012). Future decision-making without episodic mental time travel. Hippocampus, 22(6), 12151219. https://doi.org/10.1002/hipo.20981.CrossRefGoogle ScholarPubMed
Palombo, D. J., Keane, M. M., & Verfaellie, M. (2015). How do lesion studies elucidate the role of the hippocampus in intertemporal choice? Hippocampus, 25(4), 407408.CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8(9), 657661. https://doi.org/10.1080/08995600802554748.CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., & Szpunar, K. K. (2017). Escaping the past: Contributions of the hippocampus to future thinking and imagination. In Hannula, D. E. & Duff, M. C. (Eds.), The hippocampus from cells to systems: Structure, connectivity, and functional contributions to memory and flexible cognition (pp. 439465). Springer. https://doi.org/10.1007/978-3-319-50406-3.CrossRefGoogle Scholar
Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans? Behavioral and Brain Sciences, 30(3), 299351. https://doi.org/10.1017/S0140525X07001975.CrossRefGoogle ScholarPubMed
Szpunar, K. K., Spreng, R. N., & Schacter, D. L. (2014). A taxonomy of prospection: Introducing an organizational framework for future-oriented cognition. Proceedings of the National Academy of Sciences, 111(52), 1841418421. https://doi.org/10.1073/pnas.1417144111.CrossRefGoogle ScholarPubMed

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Increasing resolution in the mechanisms of resolve
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Increasing resolution in the mechanisms of resolve
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Increasing resolution in the mechanisms of resolve
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *