Hostname: page-component-857557d7f7-qr8hc Total loading time: 0 Render date: 2025-12-03T11:19:23.220Z Has data issue: false hasContentIssue false

Interactions between cortical and subcortical circuits for visual attention

Published online by Cambridge University Press:  26 November 2025

Richard Krauzlis*
Affiliation:
Laboratory of Sensorimotor Research, National Eye Institute/National Institutes of Health, Bethesda, USA richard.krauzlis@nih.gov
*
*Corresponding author.

Abstract

Recent electrophysiological studies of visual attention have highlighted the importance of visual circuits through evolutionarily conserved brain regions in the midbrain that target processing stages downstream from early visual cortex. These findings support the target article’s emphasis on late-stage “task selection” but are also consistent with early-stage modulation of basic visual features and flexible pooling of visual signals.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bogadhi, A. R., Bollimunta, A., Leopold, D. A., & Krauzlis, R. J. (2019). Spatial attention deficits are causally linked to an area in macaque temporal cortex. Curr Biol, 29(5), 726736.e4. https://doi.org/10.1016/j.cub.2019.01.028 CrossRefGoogle Scholar
Bogadhi, A. R., Katz, L. N., Bollimunta, A., Leopold, D. A., & Krauzlis, R. J. (2021). Midbrain activity shapes high-level visual properties in the primate temporal cortex. Neuron, 109(4), 690699.e5. https://doi.org/10.1016/j.neuron.2020.11.023 CrossRefGoogle ScholarPubMed
Bondy, A. G., Haefner, R. M., & Cumming, B. G. (2018). Feedback determines the structure of correlated variability in primary visual cortex. Nat Neurosci, 21(4), 598606. https://doi.org/10.1038/s41593-018-0089-1 CrossRefGoogle ScholarPubMed
Cavanaugh, J., & Wurtz, R. H. (2004). Subcortical modulation of attention counters change blindness. The Journal of Neuroscience, 24(50), 1123611243. https://doi.org/10.1523/JNEUROSCI.3724-04.2004 CrossRefGoogle ScholarPubMed
Herman, J. P., Katz, L. N., & Krauzlis, R. J. (2018). Midbrain activity can explain perceptual decisions during an attention task. Nat Neurosci, 21(12), 16511655. https://doi.org/10.1038/s41593-018-0271-5 CrossRefGoogle ScholarPubMed
Ignashchenkova, A., Dicke, P. W., Haarmeier, T., & Thier, P. (2004). Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat Neurosci, 7(1), 5664. https://doi.org/10.1038/nn1169 CrossRefGoogle ScholarPubMed
Krauzlis, R. J., Bogadhi, A. R., Herman, J. P., & Bollimunta, A. (2018). Selective attention without a neocortex. Cortex, 102, 161175. https://doi.org/10.1016/j.cortex.2017.08.026 CrossRefGoogle ScholarPubMed
Krauzlis, R. J., Bollimunta, A., Arcizet, F., & Wang, L. (2014). Attention as an effect not a cause. Trends in Cognitive Sciences, 18(9), 457464. https://doi.org/10.1016/j.tics.2014.05.008 CrossRefGoogle Scholar
Lovejoy, L. P., & Krauzlis, R. J. (2010). Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nat Neurosci, 13(2), 261266. https://doi.org/10.1038/nn.2470 CrossRefGoogle ScholarPubMed
Lovejoy, L. P., & Krauzlis, R. J. (2017). Changes in perceptual sensitivity related to spatial cues depends on subcortical activity. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 61226126. https://doi.org/10.1073/pnas.1609711114 CrossRefGoogle ScholarPubMed
Maunsell, J. H. R. (2015). Neuronal mechanisms of visual attention. Annual Review of Vision Science, 1, 373391. https://doi.org/10.1146/annurev-vision-082114-035431 CrossRefGoogle ScholarPubMed
Zenon, A., & Krauzlis, R. J. (2012). Attention deficits without cortical neuronal deficits. Nature, 489(7416), 434437. https://doi.org/10.1038/nature11497 CrossRefGoogle ScholarPubMed