Hostname: page-component-857557d7f7-s7d9s Total loading time: 0 Render date: 2025-11-26T09:21:03.273Z Has data issue: false hasContentIssue false

Attention is doing just fine! Just don’t take it too seriously

Published online by Cambridge University Press:  26 November 2025

Árni Kristjánsson*
Affiliation:
Icelandic Vision Laboratory, University of Iceland, Reykjavík, Iceland ak@hi.is
Andrey Chetverikov
Affiliation:
Department of Psychosocial Science, Faculty of Psychology, University of Bergen, Bergen, Norway Andrey.Chetverikov@uib.no www.visionlab.is
*
*Corresponding author.

Abstract

We do not share Rosenholtz’s central worry that visual attention is in “crisis”. There are many examples of notable progress in understanding how the brain prioritizes and gathers information about the environment where “attention,” as a relatively loose concept, has worked well. We also discuss how focusing on a single definition, the field can be led astray.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, B. A., Kim, H., Kim, A. J., Liao, M. R., Mrkonja, L., Clement, A., & Grégoire, L. (2021). The past, present, and future of selection history. Neuroscience & Biobehavioral Reviews, 130, 326350.CrossRefGoogle ScholarPubMed
Balas, B., Nakano, L., & Rosenholtz, R. (2009). A summary-statistic representation in peripheral vision explains visual crowding. Journal of vision, 9(12), 1313.CrossRefGoogle ScholarPubMed
Bravo, M. J., & Nakayama, K. (1992). The role of attention in different visual-search tasks. Perception & psychophysics, 51(5), 465472.CrossRefGoogle ScholarPubMed
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2016). Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 153, 196210. https://doi.org/10.1016/j.cognition.2016.04.018 CrossRefGoogle ScholarPubMed
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017a). Representing color ensembles. Psychological science, 28(10), 15101517.CrossRefGoogle ScholarPubMed
Chetverikov, A., Campana, G., & Kristjánsson, Á. (2017b). Learning features in a complex and changing environment: A distribution-based framework for visual attention and vision in general. Progress in brain research, 236, 97120.CrossRefGoogle Scholar
Chetverikov, A., Campana, G., & Kristjánsson, A. (2020). Probabilistic rejection templates in visual working memory. Cognition, 196, 104075.CrossRefGoogle ScholarPubMed
Chetverikov, A., & Kristjánsson, A. (2022). Probabilistic representations as building blocks for higher-level vision. Neurons, Behavior, Data Analysis, and Theory, 6(1), 132. https://doi.org/10.51628/001c.24910 Google Scholar
Chetverikov, A., & Kristjánsson, Á. (2024). Representing Variability: How Do We Process the Heterogeneity in the Visual Environment?. Cambridge University Press. https://doi.org/10.1017/9781009396035 CrossRefGoogle Scholar
Cohen, M. A., Dennett, D. C., & Kanwisher, N. (2016). What is the bandwidth of perceptual experience?. Trends in cognitive sciences, 20(5), 324335.CrossRefGoogle Scholar
Enns, J. T., & Rensink, R. A. (1990). Sensitivity to three-dimensional orientation in visual search. Psychological Science, 1(5), 323326.CrossRefGoogle Scholar
Geng, J. J., DiQuattro, N. E., & Helm, J. (2017). Distractor probability changes the shape of the attentional template. Journal of experimental psychology: human perception and performance, 43(12), 1993.Google ScholarPubMed
Hansmann-Roth, S., Þorsteinsdóttir, S., Geng, J. J., & Kristjánsson, Á. (2022). Temporal integration of feature probability distributions. Psychological Research, 86(6), 20302044.CrossRefGoogle ScholarPubMed
Khvostov, V., Ásgeirsson, Á. G., & Kristjánsson, Á. Explicit Access to Detailed Feature Distribution Representations. Open Science Framework, https://files.osf.io/v1/resources/vt98a/providers/osfstorage/66f57ed78b7d82c5b09e8728?action=download&direct&version=1 Google Scholar
Kristjánsson, Á. (2015). Reconsidering visual search. i-Perception, 6(6), 2041669515614670.CrossRefGoogle ScholarPubMed
Kristjánsson, Á. (2023). Priming of probabilistic attentional templates. Psychonomic Bulletin & Review, 30(1), 2239.CrossRefGoogle ScholarPubMed
Kristjánsson, Á., & Egeth, H. (2020). How feature integration theory integrated cognitive psychology, neurophysiology, and psychophysics. Attention, Perception, & Psychophysics, 82, 723.CrossRefGoogle ScholarPubMed
Kristjánsson, Á., & Kristjánsson, T. (2023). Attentional priming in Go No-Go search tasks. Vision Research, 213, 108313.CrossRefGoogle ScholarPubMed
Maljkovic, V., & Nakayama, K. (1994). Priming of pop-out: I. role of features. Memory & cognition, 22(6), 657672.CrossRefGoogle ScholarPubMed
McLeod, P., Driver, J., & Crisp, J. (1988). Visual search for a conjunction of movement and form is parallel. Nature, 332(6160), 154155.CrossRefGoogle ScholarPubMed
Nakayama, K., & Silverman, G. H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320(6059), 264265.CrossRefGoogle ScholarPubMed
Neisser, U. (1963). Decision-time without reaction-time: Experiments in visual scanning. The American journal of psychology, 76(3), 376385.CrossRefGoogle Scholar
Rosenholtz, R., Huang, J., & Ehinger, K. A. (2012). Rethinking the role of top-down attention in vision: Effects attributable to a lossy representation in peripheral vision. Frontiers in psychology, 3, 13.CrossRefGoogle ScholarPubMed
Santhi, N., & Reeves, A. (2004). The roles of distractor noise and target certainty in search: A signal detection model. Vision Research, 44(12), 12351256.CrossRefGoogle ScholarPubMed
Schoonveld, W., Shimozaki, S. S., & Eckstein, M. P. (2007). Optimal observer model of single-fixation oddity search predicts a shallow set-size function. Journal of Vision, 7(10), 11.CrossRefGoogle ScholarPubMed
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97136.CrossRefGoogle ScholarPubMed
Wang, D., Kristjánsson, A., & Nakayama, K. (2005). Efficient visual search without top-down or bottom-up guidance. Perception & Psychophysics, 67, 239253.CrossRefGoogle ScholarPubMed
Wang, Q., Cavanagh, P., & Green, M. (1994). Familiarity and pop-out in visual search. Perception & psychophysics, 56, 495500.CrossRefGoogle ScholarPubMed
Whitney, D., & Yamanashi Leib, A. (2018). Ensemble perception. Annual review of psychology, 69, 105129.CrossRefGoogle ScholarPubMed
Witkowski, P., & Geng, J. J. (2019). Learned feature variance is encoded in the target template and drives visual search. Visual Cognition, 27(5–8), 487501.CrossRefGoogle ScholarPubMed
Wolfe, J. M. (1998). What can 1 million trials tell us about visual search? Psychological Science, 9(1), 3339.CrossRefGoogle Scholar
Wolfe, J. M. (1998a). Visual search. In Pashler, H. E. (Eds.), Attention (pp. 1376). Hove, England: Psychology Press.Google Scholar
Won, B. Y., & Geng, J. J. (2018). Learned suppression for multiple distractors in visual search. Journal of experimental psychology: human perception and performance, 44(7), 11281141.Google ScholarPubMed