Skip to main content
×
×
Home

From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition

  • Tali Leibovich (a1), Naama Katzin (a2), Maayan Harel (a3) and Avishai Henik (a4)
Abstract

In this review, we are pitting two theories against each other: the more accepted theory, the number sense theory, suggesting that a sense of number is innate and non-symbolic numerosity is being processed independently of continuous magnitudes (e.g., size, area, and density); and the newly emerging theory suggesting that (1) both numerosities and continuous magnitudes are processed holistically when comparing numerosities and (2) a sense of number might not be innate. In the first part of this review, we discuss the number sense theory. Against this background, we demonstrate how the natural correlation between numerosities and continuous magnitudes makes it nearly impossible to study non-symbolic numerosity processing in isolation from continuous magnitudes, and therefore, the results of behavioral and imaging studies with infants, adults, and animals can be explained, at least in part, by relying on continuous magnitudes. In the second part, we explain the sense of magnitude theory and review studies that directly demonstrate that continuous magnitudes are more automatic and basic than numerosities. Finally, we present outstanding questions. Our conclusion is that there is not enough convincing evidence to support the number sense theory anymore. Therefore, we encourage researchers not to assume that number sense is simply innate, but to put this hypothesis to the test and consider whether such an assumption is even testable in the light of the correlation of numerosity and continuous magnitudes.

Copyright
References
Hide All
Abbas, F. & Meyer, M. P. (2014) Fish vision: Size selectivity in the zebrafish retinotectal pathway. Current Biology 24(21):R1048–50. doi: 10.1016/j.cub.2014.09.043.
Abreu-Mendoza, R. A. & Arias-Trejo, N. (2015) Numerical and area comparison abilities in Down syndrome. Research in Developmental Disabilities 41–42:5865. doi: 10.1016/j.ridd.2015.05.008.
Agrillo, C., Dadda, M., Serena, G. & Bisazza, A. (2008) Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition 11(3):495503. doi: 10.1007/s10071-008-0140-9.
Agrillo, C., Dadda, M., Serena, G. & Bisazza, A. (2009) Use of number by fish. PLoS ONE 4(3):e4786. doi: 10.1371/journal.pone.0004786.
Agrillo, C., Petrazzini, M. E. M. & Bisazza, A. (2016) Number vs. continuous quantities in lower vertebrates. In: Continuous issues in numerical cognition, ed. Henik, A., pp. 149–74. Elsevier. doi: 10.1016/B978-0-12-801637-4.00007-X.
Agrillo, C., Piffer, L., Bisazza, A. & Butterworth, B. (2015) Ratio dependence in small number discrimination is affected by the experimental procedure. Frontiers in Psychology 6:1649. doi: 10.3389/fpsyg.2015.01649.
Ashkenazi, S., Mark-Zigdon, N. & Henik, A. (2013) Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Developmental Science 16(1):3546. doi: 10.1111/j.1467-7687.2012.01190.x.
Banks, M. S. (1980) The development of visual accommodation during early infancy. Child Development 51(3):646–66.
Barth, H., Kanwisher, N. & Spelke, E. (2003) The construction of large number representations in adults. Cognition 86(3):201–21. doi: 10.1016/S0010-0277(02)00178-6.
Barth, H., La Mont, K., Lipton, J. & Spelke, E. S. (2005) Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America 102(39):14116–21. Available at: http://www.pnas.org/content/102/39/14116.short.
Beran, M. J. (2007) Rhesus monkeys (Macaca mulatta) enumerate large and small sequentially presented sets of items using analog numerical representations. Journal of Experimental Psychology: Animal Behavior Processes 33:4254.
Blair, C. & Razza, R. P. (2007) Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development 78(2):647–63. doi: 10.1111/j.1467-8624.2007.01019.x.
Bogale, B. A., Kamata, N., Mioko, K. & Sugita, S. (2011) Quantity discrimination in jungle crows, Corvus macrorhynchos . Animal Behaviour 82(4):635–41. doi: 10.1016/j.anbehav.2011.05.025.
Bonny, J. W. & Lourenco, S. F. (2013) The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology 114(3):375–88. doi: 10.1016/j.jecp.2012.09.015.
Brass, M., Ullsperger, M., Knoesche, T. R., von Cramon, D. Y. & Phillips, N. A. (2005) Who comes first? The role of the prefrontal and parietal cortex in cognitive control. Journal of Cognitive Neuroscience 17(9):1367–75. doi: 10.1162/0898929054985400.
Bugden, S. & Ansari, D. (2016) Probing the nature of deficits in the ‘approximate number system’ in children with persistent developmental dyscalculia. Developmental Science 19(5):817–33. doi: 10.1111/desc.12324.
Bull, R., Espy, K. A. & Wiebe, S. A. (2008) Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology 33(3):205–28. doi: 10.1080/87565640801982312.
Bull, R. & Scerif, G. (2001) Executive functioning as a predictor of children's mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology 19(3):273–93. Available at: http://www.tandfonline.com/doi/abs/10.1207/S15326942DN1903_3#.Va-zhUNVhBd.
Burr, D. & Ross, J. (2008) A visual sense of number. Current Biology 18(6):425–28. doi: 10.1016/j.cub.2008.02.052.
Calton, J. L. & Taube, J. S. (2009) Where am I and how will I get there from here? A role for posterior parietal cortex in the integration of spatial information and route planning. Neurobiology of Learning and Memory 91(2):186–96. doi: 10.1016/j.nlm.2008.09.015.
Calvert, G. A., Campbell, R. & Brammer, M. J. (2000) Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology 10(11):649–57. doi: 10.1016/S0960-9822(00)00513-3.
Cantlon, J. F. & Brannon, E. M. (2006) Shared system for ordering small and large numbers in monkeys and humans. Psychological Science 17(5):401406. doi: 10.1111/j.1467-9280.2006.01719.x.
Cantlon, J. F., Brannon, E. M., Carter, E. J. & Pelphrey, K. A. (2006) Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology 4(5):e125. doi: 10.1371/journal.pbio.0040125.
Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M. & Pelphrey, K. A. (2009a) The neural development of an abstract concept of number. Journal of Cognitive Neuroscience 21(11):2217–29. doi: 10.1162/jocn.2008.21159.
Cantlon, J. F., Platt, M. L. & Brannon, E. M. (2009b) Beyond the number domain. Trends in Cognitive Sciences 13(2):8391. doi: 10.1016/j.tics.2008.11.007.
Cantrell, L., Kuwabara, M. & Smith, L. B. (2015b) Set size and culture influence children's attention to number. Journal of Experimental Child Psychology 131:1937. doi: 10.1016/j.jecp.2014.10.010.
Cantrell, L. & Smith, L. B. (2013) Open questions and a proposal: A critical review of the evidence on infant numerical abilities. Cognition 128(3):331–52. doi: 10.1016/j.cognition.2013.04.008.
Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., Cohen Kadosh, R. & Walsh, V. (2013) Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. Journal of Neuroscience 33(37):14899–907. doi: 10.1523/JNEUROSCI.1692-13.2013.
Carey, S. (2001) Cognitive foundations of arithmetic: Evolution and ontogenisis. Mind & Language 16(1):3755. doi: 10.1111/1468-0017.00155.
Castelli, F., Glaser, D. E. & Butterworth, B. (2006) Discrete and analogue quantity processing in the parietal lobe: A functional MRI study. Proceedings of the National Academy of Sciences of the United States of America 103(12):4693–98. doi: 10.1073/pnas.0600444103.
Chassy, P. & Grodd, W. (2012) Comparison of quantities: Core and format-dependent regions as revealed by fMRI. Cerebral Cortex 22(6):1420–30. doi: 10.1093/cercor/bhr219.
Clayton, S. & Gilmore, C. (2015) Inhibition in dot comparison tasks. ZDM Mathematics Cognition 47:759–70. doi: 10.1007/s11858-014-0655-2.
Clayton, S., Gilmore, C. & Inglis, M. (2015) Dot comparison stimuli are not all alike: The effect of different visual controls on ANS measurement. Acta Psychologica 161:177–84. doi: 10.1016/j.actpsy.2015.09.007.
Cohen Kadosh, R., Lammertyn, J. & Izard, B. (2008) Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology 84(2):132–47. doi: 10.1016/j.pneurobio.2007.11.001.
Cohen Kadosh, R. & Walsh, V. (2008) From magnitude to natural numbers: A developmental neurocognitive perspective. Behavioral and Brain Sciences 31(6):647–48. doi: 10.1017/S0140525X08005621.
Cragg, L. & Gilmore, C. (2014) Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience and Education 3(2):6368. doi: 10.1016/j.tine.2013.12.001.
Dehaene, S. (1997) The number sense: How the mind creates mathematics. Oxford University Press.
Dehaene, S. & Changeux, J. P. (1993) Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience 5:390407. doi: 10.1162/jocn.1993.5.4.390.
DeWind, N. K., Adams, G. K., Platt, M. L. & Brannon, E. M. (2015) Modeling the approximate number system to quantify the contribution of visual stimulus features. Cognition 142:247–65. doi: 10.1016/j.cognition.2015.05.016.
Ditz, H. M. & Nieder, A. (2015) Neurons selective to the number of visual items in the corvid songbird endbrain. Proceedings of the National Academy of Sciences of the United States of America 112(25):7827–32. doi: 10.1073/pnas.1504245112.
Dobson, V. & Teller, D. Y. (1978) Visual acuity in human infants: A review and comparison of behavioral and electrophysiological studies. Vision Research 18(11):1469–83. doi: 10.1016/0042-6989(78)90001-9.
Dormal, V., Andres, M. & Pesenti, M. (2012) Contribution of the right intraparietal sulcus to numerosity and length processing: An fMRI-guided TMS study. Cortex 48(5):623–29. doi: 10.1016/j.cortex.2011.05.019.
Durgin, F. H. (2008) Texture density adaptation and visual number revisited. Current Biology 18(18):R855–56. doi: 10.1016/j.cub.2008.07.053.
Eger, E., Pinel, P., Dehaene, S. & Kleinschmidt, A. (2015) Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex. Cerebral Cortex 25(5):1319–29. Available at: http://cercor.oxfordjournals.org/content/25/5/1319.short.
Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A. & Senn, T. E. (2004) The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology 26(1):465–86. doi: 10.1207/s15326942dn2601_6.
Fazio, L. K., Bailey, D. H., Thompson, C. A. & Siegler, R. S. (2014) Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology 123:5372. Available at: http://www.sciencedirect.com/science/article/pii/S0022096514000204.
Feigenson, L. & Carey, S. (2003) Tracking individuals via object-files: Evidence from infants' manual search. Developmental Science 6(5):568–84. doi: 10.1111/1467-7687.00313.
Feigenson, L., Dehaene, S. & Spelke, E. (2004) Core systems of number. Trends in Cognitive Sciences 8(7):307–14. doi: 10.1016/j.tics.2004.05.002.
Frost, R., Siegelman, N., Narkiss, A. & Afek, L. (2013) What predicts successful literacy acquisition in a second language? Psychological Science 24(7):1243–52. doi: 10.1177/0956797612472207.
Gebuis, T., Gevers, W. & Cohen Kadosh, R. (2014) Topographic representation of high-level cognition: Numerosity or sensory processing? Trends in Cognitive Sciences 18(1):13. doi: 10.1016/j.tics.2013.10.002.
Gebuis, T. & Reynvoet, B. (2011) Generating nonsymbolic number stimuli. Behavior Research Methods 43(4):981–86. doi: 10.3758/s13428-011-0097-5.
Gebuis, T. & Reynvoet, B. (2012a) Continuous visual properties explain neural responses to nonsymbolic number. Psychophysiology 49(11):1481–91. doi: 10.1111/j.1469-8986.2012.01461.x.
Gebuis, T. & Reynvoet, B. (2012b) The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General 141(4):642–48. doi: 10.1037/a0026218.
Gebuis, T. & Reynvoet, B. (2012c) The role of visual information in numerosity estimation. PLoS ONE 7(5):e37426. doi: 10.1371/journal.pone.0037426.
Gebuis, T. & Reynvoet, B. (2013) The neural mechanisms underlying passive and active processing of numerosity. NeuroImage 70:301307. doi: 10.1016/j.neuroimage.2012.12.048.
Gebuis, T. & Reynvoet, B. (2014) The neural mechanism underlying ordinal numerosity processing. Journal of Cognitive Neuroscience 26:1013–20. doi: 10.1162/jocn_a_00541.
Gevers, W., Cohen Kadosh, R. & Gebuis, T. (2016) The sensory integration theory: An alternative to the approximate number system. In: Continuous issues in numerical cognition, ed. Henik, A., pp. 405–18. Elsevier. doi: 10.1016/B978-0-12-801637-4.00018-4.
Gliksman, Y., Naparstek, S., Ifergane, G. & Henik, A. (2015) The role of the left intraparietal sulcus (IPS) in visual and imagery comparisons: Evidence from acquired acalculia. Manuscript submitted for publication.
Gomez, A., Piazza, M., Jobert, A., Dehaene-Lambertz, G., Dehaene, S. & Huron, C. (2015) Mathematical difficulties in developmental coordination disorder: Symbolic and nonsymbolic number processing. Research in Developmental Disabilities 43–44:167–78. Available at: http://www.sciencedirect.com/science/article/pii/S0891422215000682.
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M. & Cohen, J. D. (2004) The neural bases of cognitive conflict and control in moral judgment. Neuron 44(2):389400. doi: 10.1016/j.neuron.2004.09.027.
Gross, H. J., Pahl, M., Si, A., Zhu, H., Tautz, J. & Zhang, S. (2009) Number-based visual generalisation in the honeybee. PLoS ONE 4(1):e4263. doi: 10.1371/journal.pone.0004263.
Halberda, J., Mazzocco, M. M. & Feigenson, L. (2008) Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455(7213):665–68. doi: 10.1038/nature07246.
Harvey, B. M., Klein, B. P., Petridou, N. & Dumoulin, S. O. (2013) Topographic representation of numerosity in the human parietal cortex. Science 341(6150):1123–26. doi: 10.1126/science.1239052.
Henik, A., Gliksman, Y., Kallai, A & Leibovich, T. (2017) Size perception and the foundation of Numerical Processing. Current Directions in Psychological Science 26(1):4851.
Henik, A., Leibovich, T., Naparstek, S., Diesendruck, L. & Rubinsten, O. (2012) Quantities, amounts, and the numerical core system. Frontiers in Human Neuroscience 5:186. doi: 10.3389/fnhum.2011.00186.
Holloway, I. D., Price, G. R. & Ansari, D. (2010) Common and segregated neural pathways for the processing of symbolic and nonsymbolic numerical magnitude: An fMRI study. NeuroImage 49(1):1006–17. doi: 10.1016/j.neuroimage.2009.07.071.
Hurewitz, F., Gelman, R. & Schnitzer, B. (2006) Sometimes area counts more than number. Proceedings of the National Academy of Sciences of the United States of America 103(51):19599–604. doi: 10.1073/pnas.0609485103.
Im, H. Y., Zhong, S.-H. & Halberda, J. (2016) Grouping by proximity and the visual impression of approximate number in random dot arrays. Vision Research 126:291307. Available at: http://www.sciencedirect.com/science/article/pii/S0042698915002813.
Izard, V., Sann, C., Spelke, E. S. & Steri, A. (2009) Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America 106(25):10382–85.
Jancke, L. (2001) The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes. Cerebral Cortex 11(2):114–21. doi: 10.1093/cercor/11.2.114.
Jordan, K. E. & Baker, J. (2011) Multisensory information boosts numerical matching abilities in young children. Developmental Science 14(2):205–13. doi: 10.1111/j.1467-7687.2010.00966.x.
Jordan, K. E., Suanda, S. H. & Brannon, E. M. (2008b) Intersensory redundancy accelerates preverbal numerical competence. Cognition 108(1):210–21. doi: 10.1016/j.cognition.2007.12.001.
Kaufman, E. L., Lord, M. W., Reese, T. W. & Volkmann, J. (1949) The discrimination of visual number. American Journal of Psychology 62:498525.
Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., Felber, S. & Ischebeck, A. (2005) Neural correlates of distance and congruity effects in a numerical Stroop task: An event-related fMRI study. NeuroImage 25(3):888–98. doi: 10.1016/j.neuroimage.2004.12.041.
Keller, L. & Libertus, M. (2015) Inhibitory control may not explain the link between approximation and math abilities in kindergarteners from middle class families. Frontiers in Psychology 6:685. doi: 10.3389/fpsyg.2015.00685.
Leibovich, T. & Ansari, D. (2016) The symbol-grounding problem in numerical cognition: A review of theory, evidence and outstanding questions. Canadian Journal of Experimental Psychology 70(1):1223.
Leibovich, T. & Henik, A. (2013) Magnitude processing in non-symbolic stimuli. Frontiers in Psychology 4:375. doi: 10.3389/fpsyg.2013.00375.
Leibovich, T. & Henik, A. (2014) Comparing performance in discrete and continuous comparison tasks. Quarterly Journal of Experimental Psychology 67(5):119. doi: 10.1080/17470218.2013.837940.
Leibovich, T., Henik, A. & Salti, M. (2015) Numerosity processing is context driven even in the subitizing range: An fMRI study. Neuropsychologia 77:137–47. doi: 10.1016/j.neuropsychologia.2015.08.016.
Leibovich, T., Kallai, A. & Itamar, S. (2016a) What do we measure when we measure magnitudes? In: Continuous issues in numerical cognition, ed. Henik, A., pp. 355–73. Elsevier. doi: 10.1016/B978-0-12-801637-4.00016-0.
Leibovich, T., Vogel, S. E., Henik, A. & Ansari, D. (2016b) Asymmetric processing of numerical and non-numerical magnitudes in the brain: An fMRI study. Journal of Cognitive Neuroscience 28(1):166–76. doi: 10.1162/jocn_a_00887.
Leroux, G., Spiess, J., Zago, L., Rossi, S., Lubin, A., Turbelin, M.-R., Mazoyer, B., Tzourio-Mazoyer, N., Houdé, O. & Joliot, M. (2009) Adult brains don't fully overcome biases that lead to incorrect performance during cognitive development: An fMRI study in young adults completing a Piaget-like task. Developmental Science 12(2):326–38. doi: 10.1111/j.1467-7687.2008.00785.x.
Lettvin, J., Maturana, H., McCulloch, W. & Pitts, W. (1959) What the frog's eye tells the frog's brain. Proceedings of the IRE 47(11):1940–51. doi: 10.1109/JRPROC.1959.287207.
Libertus, M. E., Starr, A. & Brannon, E. M. (2014) Number trumps area for 7-month-old infants. Developmental Psychology 50(1):108–12. doi: 10.1037/a0032986.
McComb, K., Packer, C. & Pusey, A. (1994) Roaring and numerical assessment in contests between groups of female lions, Panthera leo . Animal Behaviour 47(2):379–87. doi: 10.1006/anbe.1994.1052.
Meck, W. H. & Church, R. M. (1983) A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes 9:320–34.
Mix, K. S., Huttenlocher, J. & Levine, S. C. (2002a) Multiple cues for quantification in infancy: Is number one of them? Psychological Bulletin 128(2):278–94. doi: 10.1037/0033-2909.128.2.278.
Mix, K. S., Levine, S. C. & Newcombe, N. S. (2016) Development of quantitative thinking across correlated dimensions. In: Continuous issues in numerical cognition, ed. Henik, A., pp. 133. Elsevier. doi: 10.1016/B978-0-12-801637-4.00001-9.
Mix, K. S. & Sandhofer, C. M. (2007) Do we need a number sense? In: Integrating the mind, ed. Roberts, M. J., pp. 293326. Psychology Press.
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A. & Wager, T. D. (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology 41(1):49100. doi: 10.1006/cogp.1999.0734.
Morton, J. B. (2010) Understanding genetic, neurophysiological, and experiential influences on the development of executive functioning: The need for developmental models. Wiley Interdisciplinary Reviews: Cognitive Science 1(5):709–23. doi: 10.1002/wcs.87.
Moyer, R. S. & Landauer, T. K. (1967) Time required for judgements of numerical inequality. Nature 215(5109):1519–20. doi: 10.1038/2151519a0.
Mussolin, C., Mejias, S. & Noël, M. P. (2010) Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition 115(1):1025. doi: 10.1016/j.cognition.2009.10.006.
Naghavi, H. R. & Nyberg, L. (2005) Common fronto-parietal activity in attention, memory, and consciousness: Shared demands on integration? Consciousness and Cognition 14(2):390425. doi: 10.1016/j.concog.2004.10.003.
Nieder, A. (2005) Counting on neurons: The neurobiology of numerical competence. Nature Reviews Neuroscience 6(3):177–90. doi: 10.1038/nrn1626.
Nieder, A. & Dehaene, S. (2009) Representation of number in the brain. Annual Review of Neuroscience 32:185208. doi: 10.1146/annurev.neuro.051508.135550.
Nys, J. & Content, A. (2012) Judgement of discrete and continuous quantity in adults: Number counts! Quarterly Journal of Experimental Psychology 65(4):675–90. doi: 10.1080/17470218.2011.619661.
Oppenheimer, D. M., LeBoeuf, R. A. & Brewer, N. T. (2008) Anchors aweigh: A demonstration of cross-modality anchoring and magnitude priming. Cognition 106(1):1326. doi: 10.1016/j.cognition.2006.12.008.
Park, J., DeWind, N. K., Woldorff, M. G. & Brannon, E. M. (2016b) Rapid and direct encoding of numerosity in the visual stream. Cerebral Cortex 26(2):748–63. doi: 10.1093/cercor/bhv017.
Piaget, J. (1952) The child's conception of number. Psychology Press.
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S. & Zorzi, M. (2010) Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 116(1):3341. doi: 10.1016/j.cognition.2010.03.012.
Piazza, M., Izard, V., Pinel, P., Le Bihan, D. & Dehaene, S. (2004) Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron 44(3):547–55. doi: 10.1016/j.neuron.2004.10.014.
Pinel, P., Piazza, M., Le Bihan, D. & Dehaene, S. (2004) Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron 41(6):983–93. doi: 10.1016/S0896-6273(04)00107-2.
Pisa, P. E. & Agrillo, C. (2008) Quantity discrimination in felines: A preliminary investigation of the domestic cat (Felis silvestris catus). Journal of Ethology 27(2):289–93. doi: 10.1007/s10164-008-0121-0.
Pollmann, S., Zinke, W., Baumgartner, F., Geringswald, F. & Hanke, M. (2014) The right temporo-parietal junction contributes to visual feature binding. NeuroImage 101:289–97. doi: 10.1016/j.neuroimage.2014.07.021.
Preuss, S. J., Trivedi, C. A., vom Berg-Maurer, C. M., Ryu, S. & Bollmann, J. H. (2014) Classification of object size in retinotectal microcircuits. Current Biology 24(20):2376–85. doi: 10.1016/j.cub.2014.09.012.
Rubinsten, O. & Henik, A. (2009) Developmental dyscalculia: Heterogeneity might not mean different mechanisms. Trends in Cognitive Sciences 13(2):9299. doi: 10.1016/j.tics.2008.11.002.
Rugani, R., Vallortigara, G. & Regolin, L. (2013) Numerical abstraction in young domestic chicks (Gallus gallus). PLoS ONE 8(6):e65262. doi: 10.1371/journal.pone.0065262.
Salti, M., Katzin, N., Katzin, D., Leibovich, T. & Henik, A. (2017) One tamed at a time: A new approach for controlling continuous magnitudes in numerical comparison tasks. Behavior Research Methods 49(3):1120–27. doi: 10.3758/s13428-016-0772-7.
Shafritz, K. M., Gore, J. C. & Marois, R. (2002) The role of the parietal cortex in visual feature binding. Proceedings of the National Academy of Sciences of the United States of America 99(16):10917–22. doi: 10.1073/pnas.152694799.
Shilling, V. M., Chetwynd, A. & Rabbitt, P. M. A. (2002) Individual inconsistency across measures of inhibition: An investigation of the construct validity of inhibition in older adults. Neuropsychologia 40(6):605–19. doi: 10.1016/S0028-3932(01)00157-9.
Smets, K., Sasanguie, D., Szücs, D. & Reynvoet, B. (2015) The effect of different methods to construct non-symbolic stimuli in numerosity estimation and comparison. Journal of Cognitive Psychology 27(3):310–25. doi: 10.1080/20445911.2014.996568.
Soltész, F. & Szücs, D. (2014) Neural adaptation to non-symbolic number and visual shape: An electrophysiological study. Biological Psychology 103:203–11. doi: 10.1016/j.biopsycho.2014.09.006.
St Clair-Thompson, H. L. & Gathercole, S. E. (2006) Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology 59(4):745–59. doi: 10.1080/17470210500162854.
Szücs, D., Nobes, A., Devine, A., Gabriel, F. C. & Gebuis, T. (2013) Visual stimulus parameters seriously compromise the measurement of approximate number system acuity and comparative effects between adults and children. Frontiers in Psychology 4:444. doi:10.3389/fpsyg. 2013.00444.
Tokita, M. & Ishiguchi, A. (2010) How might the discrepancy in the effects of perceptual variables on numerosity judgment be reconciled? Attention, Perception & Psychophysics 72(7):1839–53. doi: 10.3758/APP.72.7.1839.
Tokita, M. & Ishiguchi, A. (2013) Effects of perceptual variables on numerosity comparison in 5–6-year-olds and adults. Frontiers in Psychology 4:431. doi: 10.3389/fpsyg.2013.00431.
Tudusciuc, O. & Nieder, A. (2007) Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proceedings of the National Academy of Sciences of the United States of America 104(36):14513–18. doi: 10.1073/pnas.0705495104.
Vallentin, D. & Nieder, A. (2010) Representations of visual proportions in the primate posterior parietal and prefrontal cortices. European Journal of Neuroscience 32(8):1380–87. doi: 10.1111/j.1460-9568.2010.07427.x.
Verguts, T. & Fias, W. (2004) Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience 16(9):1493–504. doi: 10.1162/0898929042568497.
Viswanathan, P. & Nieder, A. (2013) Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices. Proceedings of the National Academy of Sciences of the United States of America 110(27):11187–92. doi: 10.1073/pnas.1308141110.
Walsh, V. (2003) A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences 7(11):483–88. doi: 10.1016/j.tics.2003.09.002.
Watanabe, S. (1998) Discrimination of “four” and “two” by pigeons. Psychological Record 4:383–91.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Behavioral and Brain Sciences
  • ISSN: 0140-525X
  • EISSN: 1469-1825
  • URL: /core/journals/behavioral-and-brain-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed