Skip to main content

Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory

  • Mara Mather (a1), David Clewett (a2), Michiko Sakaki (a3) and Carolyn W. Harley (a4)

Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate “NE hotspots.” At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory
      Available formats
Hide All
Abraham, W. C. & Williams, J. M. (2008) LTP maintenance and its protein synthesis-dependence. Neurobiology of Learning and Memory 89(3):260–68.
Alger, B. E. & Nicoll, R. A. (1980) Epileptiform burst afterhyperolarization: Calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 210(4474):1122–24.
Alnæs, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P. & Laeng, B. (2014) Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision 14(4). doi: 10.1167/14.4.1.
Amaral, D. G., Behniea, H. & Kelly, J. L. (2003) Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience 118(4):1099–120.
Anderson, A. K. (2005) Affective influences on the attentional dynamics supporting awareness. Journal of Experimental Psychology: General 134(2):258–81. doi: 10.1037/0096-3445.134.2.258.
Anderson, A. K., Wais, P. E. & Gabrieli, J. D. E. (2006) Emotion enhances remembrance of neutral events past. Proceedings of the National Academy of Sciences of the United States of America 103(5):1599–604. doi: 10.1073/pnas.0506308103.
Arnsten, A. F. & Cai, J. (1993) Postsynaptic alpha-2 receptor stimulation improves memory in aged monkeys: Indirect effects of yohimbine versus direct effects of clonidine. Neurobiology of Aging 14(6):597603.
Arnsten, A. F. & Goldman-Rakic, P. S. (1985) Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science 230(4731):1273–76.
Arnsten, A. F. T. (2011) Catecholamine influences on dorsolateral prefrontal cortical networks. Biological Psychiatry 69(12):e89e99. Available at:
Arnsten, A. F. T. & Goldman-Rakic, P. S. (1984) Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Research 306(1/2):918. Available at:
Astafiev, S. V., Snyder, A. Z., Shulman, G. L. & Corbetta, M. (2010) Comment on “Modafinil shifts human locus coeruleus to low-tonic, high-phasic activity during functional MRI” and “Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area.Science 328(5976):309.
Aston-Jones, G. & Bloom, F. E. (1981) Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. The Journal of Neuroscience 1(8):887900.
Aston-Jones, G. & Cohen, J. D. (2005) An integrative theory of locus coeruleus–norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience 28:403–50.
Aston-Jones, G., Rajkowski, J. & Cohen, J. (1999) Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry 46(9):1309–20.
Awh, E., Belopolsky, A. V. & Theeuwes, J. (2012) Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences 16(8):437–43.
Bakker, A., Kirwan, C. B., Miller, M. & Stark, C. E. L. (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319(5870):1640–42.
Baluch, F. & Itti, L. (2011) Mechanisms of top-down attention. Trends in Neurosciences 34(4):210–24.
Bangasser, D. & Valentino, R. (2012) Sex differences in molecular and cellular substrates of stress. Cellular and Molecular Neurobiology 32(5):709–23. doi: 10.1007/s10571-012-9824-4.
Barsegyan, A., McGaugh, J. L. & Roozendaal, B. (2014) Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory. Frontiers in Behavioral Neuroscience 8:Article 160.
Beaudet, A. & Descarries, L. (1978) The monoamine innervation of rat cerebral cortex: Synaptic and nonsynaptic axon terminals. Neuroscience 3(10):851–60.
Beck, D. M. & Kastner, S. (2009) Top-down and bottom-up mechanisms in biasing competition in the human brain. Vision Research 49(10):1154–65. doi: 10.1016/j.visres.2008.07.012.
Bekar, L. K., Wei, H. S. & Nedergaard, M. (2012) The locus coeruleus–norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. Journal of Cerebral Blood Flow and Metabolism 32:2135–45.
Benavides-Piccione, R., Arellano, J. I. & DeFelipe, J. (2005) Catecholaminergic innervation of pyramidal neurons in the human temporal cortex. Cerebral Cortex 15(10):1584–91. doi: 10.1093/cercor/bhi036.
Bergado, J. A., Lucas, M. & Richter-Levin, G. (2011) Emotional tagging: A simple hypothesis in a complex reality. Progress in Neurobiology 94(1):6476. doi: 10.1016/j.pneurobio.2011.03.004.
Berridge, C. & Foote, S. (1991) Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. The Journal of Neuroscience 11(10):3135–45.
Berridge, C., Page, M., Valentino, R. & Foote, S. (1993) Effects of locus coeruleus inactivation on electroencephalographic activity in neocortex and hippocampus. Neuroscience 55(2):381–93.
Berridge, C. W., Schmeichel, B. E. & Espana, R. A. (2012) Noradrenergic modulation of wakefulness/arousal. Sleep Medicine Reviews 16(2):187–97. doi: 10.1016/j.smrv.2011.12.003.
Berridge, C. W. & Waterhouse, B. D. (2003) The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews 42(1):3384. doi: 10.1016/s0165-0173(03)00143-7.
Bickler, P. E. & Hansen, B. M. (1996) α2-Adrenergic agonists reduce glutamate release and glutamate receptor-mediated calcium changes in hippocampal slices during hypoxia. Neuropharmacology 35(6):679–87.
Bigham, M. H. & Lidow, M. S. (1995) Adrenergic and serotonergic receptors in aged monkey neocortex. Neurobiology of Aging 16(1):91104.
Bishop, S. J. (2007) Neurocognitive mechanisms of anxiety: An integrative account. Trends in Cognitive Sciences 11(7):307–16.
Bliss, T. V. P. & Collingridge, G. L. (1993) A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361(6407):3139.
Bloomer, W. A., VanDongen, H. M. & VanDongen, A. M. (2008) Arc/Arg3.1 translation is controlled by convergent N-methyl-D-aspartate and Gs-coupled receptor signaling pathways. Journal of Biological Chemistry 283(1):582–92.
Bocanegra, B. R. & Zeelenberg, R. (2009) Dissociating emotion-induced blindness and hypervision. Emotion 9(6):865–73. doi: 10.1037/a0017749.
Botvinick, M. M., Nystrom, L. E., Fissell, K., Carter, C. S. & Cohen, J. D. (1999) Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402(6758):179–81.
Bouret, S., Duvel, A., Onat, S. & Sara, S. J. (2003) Phasic activation of locus ceruleus neurons by the central nucleus of the amygdala. The Journal of Neuroscience 23(8):3491–97.
Bouret, S. & Richmond, B. J. (2015) Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. The Journal of Neuroscience 35(9):4005–14. doi: 10.1523/jneurosci.4553-14.2015.
Bouret, S. & Sara, S. J. (2005) Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends in Neurosciences 28(11):574–82. Available at:
Brede, M., Philipp, M., Knaus, A., Muthig, V. & Hein, L. (2004) α2-Adrenergic receptor subtypes – Novel functions uncovered in gene-targeted mouse models. Biology of the Cell 96(5):343–48.
Bressler, S. L. & Menon, V. (2010) Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences 14(6):277–90.
Briand, L. A., Gritton, H., Howe, W. M., Young, D. A. & Sarter, M. (2007) Modulators in concert for cognition: Modulator interactions in the prefrontal cortex. Progress in Neurobiology 83(2):6991.
Brown, R. A. M., Walling, S. G., Milway, J. S. & Harley, C. W. (2005) Locus ceruleus activation suppresses feedforward interneurons and reduces beta-gamma electroencephalogram frequencies while it enhances theta frequencies in rat dentate gyrus. Journal of Neuroscience 25(8):1985–91. doi: 10.1053/jneurosci.4307-04-2005.
Burban, A., Faucard, R., Armand, V., Bayard, C., Vorobjev, V. & Arrang, J.-M. (2010) Histamine potentiates N-methyl-D-aspartate receptors by interacting with an allosteric site distinct from the polyamine binding site. Journal of Pharmacology and Experimental Therapeutics 332(3):912–21.
Burke, J. F., Zaghloul, K. A., Jacobs, J., Williams, R. B., Sperling, M. R., Sharan, A. D. & Kahana, M. J. (2013) Synchronous and asynchronous theta and gamma activity during episodic memory formation. The Journal of Neuroscience 33(1):292304.
Bush, G., Luu, P. & Posner, M. I. (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences 4(6):215–22.
Buzsáki, G. & Wang, X.-J. (2012) Mechanisms of gamma oscillations. Annual Review of Neuroscience 35(1):203–25. doi: 10.1146/annurev-neuro-062111-150444.
Cahill, L., Gorski, L. & Le, K. (2003) Enhanced human memory consolidation with post-learning stress: Interaction with the degree of arousal at encoding. Learning and Memory 10(4):270–74. doi: 10.1101/lm.62403.
Cai, W., Chen, T., Ryali, S., Kochalka, J., Li, C.-S. R. & Menon, V. (2015) Causal interactions within a frontal-cingulate-parietal network during cognitive control: Convergent evidence from a multisite–multitask investigation. Cerebral Cortex 26(5):2140–53. doi: 10.1093/cercor/bhv046.
Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Berger, M. S., Barbaro, N. M. & Knight, R. T. (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793):1626–28. doi: 10.1126/science.1128115.
Canolty, R. T. & Knight, R. T. (2010) The functional role of cross-frequency coupling. Trends in Cognitive Sciences 14(11):506–15. Available at:
Cardin, J. A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.-H. & Moore, C. I. (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–67. doi: 10.1038/nature08002.
Carlen, M., Meletis, K., Siegle, J. H., Cardin, J. A., Futai, K., Vierling-Claassen, D., Ruhlmann, C., Jones, S. R., Deisseroth, K., Sheng, M., Moore, C. I. & Tsai, L. H. (2012) A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Molecular Psychiatry 17(5):537–48. Available at:
Carrasco, G. A. & Van de Kar, L. D. (2003) Neuroendocrine pharmacology of stress. European Journal of Pharmacology 463(1–3):235–72. Available at:
Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., Deisseroth, K. & de Lecea, L. (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature Neuroscience 13(12):1526–33. Available at:
Cerf, M., Frady, E. P. & Koch, C. (2009) Faces and text attract gaze independent of the task: Experimental data and computer model. Journal of Vision 9(12):10.
Chamberlain, S. R. & Robbins, T. W. (2013) Noradrenergic modulation of cognition: Therapeutic implications. Journal of Psychopharmacology 27(8):694718.
Chandler, D. J., Gao, W.-J. & Waterhouse, B. D. (2014) Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proceedings of the National Academy of Sciences of the United States of America 111(18):6816–21.
Chang, C. C., Goshima, Y. & Misu, Y. (1986) Evidence for the existence of stereoselective presynaptic β1-adrenoceptors on noradrenergic and dopaminergic neurons in the rat hypothalamus. The Japanese Journal of Pharmacology 42(3):447–49.
Chau, L. S. & Galvez, R. (2012) Amygdala's involvement in facilitating associative learning-induced plasticity: A promiscuous role for the amygdala in memory acquisition. Frontiers in Integrative Neuroscience 6:92. doi: 10.3389/fnint.2012.00092.
Chen, F. J. & Sara, S. J. (2007) Locus coeruleus activation by foot shock or electrical stimulation inhibits amygdala neurons. Neuroscience 144(2):472–81.
Choi, J. M., Padmala, S. & Pessoa, L. (2012) Impact of state anxiety on the interaction between threat monitoring and cognition. NeuroImage 59(2):1912–23.
Cirelli, C., Huber, R., Gopalakrishnan, A., Southard, T. L. & Tononi, G. (2005) Locus ceruleus control of slow-wave homeostasis. The Journal of Neuroscience 25(18):4503–11. doi: 10.1523/jneurosci.4845-04.2005.
Cirelli, C., Pompeiano, M. & Tononi, G. (1996) Neuronal gene expression in the waking state: A role for the locus coeruleus. Science 274(5290):1211–15.
Cirelli, C. & Tononi, G. (2000) Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. The Journal of Neuroscience 20(24):9187–94.
Clewett, D., Schoeke, A. & Mather, M. (2014) Locus coeruleus neuromodulation of memories encoded during negative or unexpected action outcomes. Neurobiology of Learning and Memory 111:6570.
Cocchi, L., Zalesky, A., Fornito, A. & Mattingley, J. B. (2013) Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences 17(10):493501.
Constantinople, C. M. & Bruno, R. M. (2011) Effects and mechanisms of wakefulness on local cortical networks. Neuron 69(6):1061–68. Available at:
Corbetta, M., Patel, G. & Shulman, G. L. (2008) The reorienting system of the human brain: From environment to theory of mind. Neuron 58(3):306–24.
Cousijn, H., Rijpkema, M., Qin, S., van Marle, H. J., Franke, B., Hermans, E. J., van Wingen, G. & Fernández, G. (2010) Acute stress modulates genotype effects on amygdala processing in humans. Proceedings of the National Academy of Sciences of the United States of America (21):9867–72.
Cox, D. J., Racca, C. & Lebeau, F. E. N. (2008) β-Adrenergic receptors are differentially expressed in distinct interneuron subtypes in the rat hippocampus. The Journal of Comparative Neurology 509(6):551–65. doi: 10.1002/cne.21758.
Craig, A. D. (2009) How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience 10(1):5970. doi: 10.1038/nrn2555.
Critchley, H. D., Tang, J., Glaser, D., Butterworth, B. & Dolan, R. J. (2005) Anterior cingulate activity during error and autonomic response. NeuroImage 27(4):885–95.
Dang-Vu, T. T., Schabus, M., Desseilles, M., Albouy, G., Boly, M., Darsaud, A., Gais, S., Rauchs, G., Sterpenich, V. & Vandewalle, G. (2008) Spontaneous neural activity during human slow wave sleep. Proceedings of the National Academy of Sciences of the United States of America 105(39):15160–65.
de Quervain, D. J., Kolassa, I.-T., Ertl, V., Onyut, P. L., Neuner, F., Elbert, T. & Papassotiropoulos, A. (2007) A deletion variant of the α2b-adrenoceptor is related to emotional memory in Europeans and Africans. Nature Neuroscience 10(9):1137–39.
De Vos, H., Vauquelin, G., Keyser, J., Backer, J. P. & Liefde, I. (1992) Regional distribution of α2A-and α2B-Adrenoceptor subtypes in postmortem human brain. Journal of Neurochemistry 58(4):1555–60.
Decamp, E., Clark, K. & Schneider, J. S. (2011) Effects of the alpha-2 adrenoceptor agonist guanfacine on attention and working memory in aged non-human primates. European Journal of Neuroscience 34(6):1018–22.
Delaney, A. J., Crane, J. W. & Sah, P. (2007) Noradrenaline modulates transmission at a central synapse by a presynaptic mechanism. Neuron 56(5):880–92. Available at:
Descarries, L., Watkins, K. C. & Lapierre, Y. (1977) Noradrenergic axon terminals in the cerebral cortex of rat: III. Topometric ultrastructural analysis. Brain Research 133(2):197222.
Desimone, R. & Duncan, J. (1995) Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18:193222.
Devauges, V. & Sara, S. J. (1991) Memory retrieval enhancement by locus coeruleus stimulation: Evidence for mediation by β-receptors. Behavioural Brain Research 43(1):9397.
Devilbiss, D. M. & Waterhouse, B. D. (2011) Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat. Journal of Neurophysiology 105(1):6987. doi: 10.1152/jn.00445.2010.
Devilbiss, D. M., Waterhouse, B. D., Berridge, C. W. & Valentino, R. (2012) Corticotropin-releasing factor acting at the locus coeruleus disrupts thalamic and cortical sensory-evoked responses. Neuropsychopharmacology 37(9):2020–30.
Diamond, D. M., Park, C. R., Campbell, A. M. & Woodson, J. C. (2005) Competitive interactions between endogenous LTD and LTP in the hippocampus underlie the storage of emotional memories and stress-induced amnesia. Hippocampus 15(8):1006–25.
Diekelmann, S. & Born, J. (2010) The memory function of sleep. Nature Reviews Neuroscience 11(2):114–26.
Dolcos, F., Diaz-Granados, P., Wang, L. H. & McCarthy, G. (2008) Opposing influences of emotional and non-emotional distracters upon sustained prefrontal cortex activity during a delayed-response working memory task. Neuropsychologia 46(1):326–35. doi: 10.1016/j.neuropsychologia.2007.07.010.
Dolcos, F., Iordan, A. D. & Dolcos, S. (2011) Neural correlates of emotion–cognition interactions: A review of evidence from brain imaging investigations. Journal of Cognitive Psychology 23:669–94.
Dolcos, F., LaBar, K. S. & Cabeza, R. (2004) Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron 42(5):855–63.
Dolcos, F. & McCarthy, G. (2006) Brain systems mediating cognitive interference by emotional distraction. Journal of Neuroscience 26(7):2072–79. doi: 10.1523/JNEUROSCI.5042-05.2006.
Duman, R. S. & Enna, S. (1986) A procedure for measuring α2-adrenergic receptor-mediated inhibition of cyclic AMP accumulation in rat brain slices. Brain Research 384(2):391–94.
Duncan, J. (2006) EPS Mid-Career Award 2004 – Brain mechanisms of attention. Quarterly Journal of Experimental Psychology 59(1):227. doi: 10.1080/17470210500260674.
Dunsmoor, J. E., Murty, V. P., Davachi, L. & Phelps, E. A. (2015) Emotional learning selectively and retroactively strengthens memories for related events. Nature 520(7547): 345–48.
Easterbrook, J. A. (1959) The effect of emotion on cue utilization and the organization of behavior. Psychological Review 66(3):183201. doi: 10.1037/h0047707.
Easterbrook, J. A. (1982) This week's citation classic. Current Contents (12):20.
Eckert, M. A., Menon, V., Walczak, A., Ahlstrom, J., Denslow, S., Horwitz, A. & Dubno, J. R. (2009) At the heart of the ventral attention system: The right anterior insula. Human Brain Mapping 30(8):2530–41. doi: 10.1002/hbm.20688.
Egli, R. E., Kash, T. L., Choo, K., Savchenko, V., Matthews, R. T., Blakely, R. D. & Winder, D. G. (2005) Norepinephrine modulates glutamatergic transmission in the bed nucleus of the stria terminalis. Neuropsychopharmacology 30(4):657–68.
Eldar, E., Cohen, J. D. & Niv, Y. (2013) The effects of neural gain on attention and learning. Nature Neuroscience 16(8):1146–53.
Eschenko, O., Magri, C., Panzeri, S. & Sara, S. J. (2012) Noradrenergic neurons of the locus coeruleus are phase locked to cortical up–down states during sleep. Cerebral Cortex 22(2):426–35.
Eschenko, O. & Sara, S. J. (2008) Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: Brain stem–cortex interplay for memory consolidation? Cerebral Cortex 18(11):2596–603. doi: 10.1093/cercor/bhn020.
Eysenck, M. W., Derakshan, N., Santos, R. & Calvo, M. G. (2007) Anxiety and cognitive performance: Attentional control theory. Emotion 7(2):336.
Fallon, J. H., Koziell, D. A. & Moore, R. Y. (1978) Catecholamine innervation of the basal forebrain: II. Amygdala, suprarhinal cortex and entorhinal cortex. The Journal of Comparative Neurology 180(3):509–31. doi: 10.1002/cne.901800308.
Fecteau, J. H. & Munoz, D. P. (2006) Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences 10(8):382–90. doi: 10.1016/j.tics.2006.06.011.
Ferrero, J. J., Alvarez, A. M., Ramirez-Franco, J., Godino, M. C., Bartolome-Martin, D., Aguado, C., Torres, M., Lujan, R., Ciruela, F. & Sanchez-Prieto, J. (2013) β-Adrenergic receptors activate Epac, translocate Munc13-1 and enhance the Rab3A–Rim1α interaction to potentiate glutamate release at cerebrocortical nerve terminals. Journal of Biological Chemistry 288(43):31370–85.
Fink, K., Göthert, M., Molderings, G. & Schlicker, E. (1989) N-Methyl-D-aspartate (NMDA) receptor-mediated stimulation of noradrenaline release, but not release of other neurotransmitters, in the rat brain cortex: Receptor location, characterization and desensitization. Naunyn-Schmiedeberg's Archives of Pharmacology 339(5):514–21.
Fink, K., Schultheiß, R. & Göthert, M. (1992) Stimulation of noradrenaline release in human cerebral cortex mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. British Journal of Pharmacology 106(1):6772.
Fischer, J. & Whitney, D. (2012) Attention gates visual coding in the human pulvinar. Nature Communications 3:1051.
Florin-Lechner, S. M., Druhan, J. P., Aston-Jones, G. & Valentino, R. J. (1996) Enhanced norepinephrine release in prefrontal cortex with burst stimulation of the locus coeruleus. Brain Research 742(1/2):8997.
Foote, S. L., Aston-Jones, G. & Bloom, F. E. (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences of the United States of America 77(5):3033–37.
Foote, S. L., Freedman, R. & Oliver, A. P. (1975) Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Research 86(2):229–42.
Foote, S. L. & Morrison, J. H. (1987) Extrathalamic modulation of cortical function. Annual Review of Neuroscience 10:6795. doi: 10.1146/annurev.neuro.10.1.67.
Frankland, P. W. & Josselyn, S. A. (2015) Memory allocation. Neuropsychopharmacology 40(1):243–43.
Freedman, R., Hoffer, B. J., Woodward, D. J. & Puro, D. (1977) Interaction of norepinephrine with cerebellar activity evoked by mossy and climbing fibers. Experimental Neurology 55(1):269–88.
Frey, S., Bergado-Rosado, J., Seidenbecher, T., Pape, H.-C. & Frey, J. U. (2001) Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: Heterosynaptic induction mechanisms of late-LTP. The Journal of Neuroscience 21(10):3697–703.
Fries, P. (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Review of Neuroscience 32(1):209–24. doi: 10.1146/annurev.neuro.051508.135603.
Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508):1560–63. doi: 10.2307/3082512.
Friston, K. (2010) The free-energy principle: A unified brain theory? Nature Reviews Neuroscience 11(2):127–38.
Gais, S., Rasch, B., Dahmen, J. C., Sara, S. & Born, J. (2011) The memory function of noradrenergic activity in non-REM sleep. Journal of Cognitive Neuroscience 23(9):2582–92. doi: 10.1162/jocn.2011.21622.
Gaspar, P., Berger, B., Febvret, A., Vigny, A. & Henry, J. P. (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. Journal of Comparative Neurology 279(2):249–71.
Gehring, W. J. & Willoughby, A. R. (2002) The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295(5563):2279–82. doi: 10.2307/3076349.
Gelinas, J. N. & Nguyen, P. V. (2005) Beta-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. Journal of Neuroscience 25(13):3294–303. doi: 10.1523/jneurosci.4175-04.2005.
Gelinas, J. N., Tenorio, G., Lemon, N., Abel, T. & Nguyen, P. V. (2008) β-Adrenergic receptor activation during distinct patterns of stimulation critically modulates the PKA-dependence of LTP in the mouse hippocampus. Learning and Memory 15(5):281–89.
Gereau, R. & Conn, P. J. (1994) A cyclic AMP-dependent form of associative synaptic plasticity induced by coactivation of beta-adrenergic receptors and metabotropic glutamate receptors in rat hippocampus. The Journal of Neuroscience 14(5):3310–18.
Gilsbach, R. & Hein, L. (2008) Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. In: Pharmacology of neurotransmitter release, ed. Südhof, T. C. & Starke, K., pp. 261–88. Springer.
Gire, D. H. & Schoppa, N. E. (2008) Long-term enhancement of synchronized oscillations by adrenergic receptor activation in the olfactory bulb. Journal of Neurophysiology 99(4):2021–25. doi: 10.1152/jn.01324.2007.
Gonzales, R. A., Brown, L. M., Jones, T. W., Trent, R. D., Westbrook, S. L. & Leslie, S. W. (1991) N-Methyl-D-aspartate mediated responses decrease with age in Fischer 344 rat brain. Neurobiology of Aging 12(3):219–25.
Göthert, M. & Fink, K. (1991) Stimulation of noradrenaline release in the cerebral cortex via presynaptic N-Methyl-D-aspartate (NMDA) receptors and their pharmacological characterization. In: Recent advances in neuropharmacology, ed. Bönisch, H., Graefe, K.-H., Langer, S. Z. & Schömig, E., pp. 121–27. Springer.
Grant, S. J., Aston-Jones, G. & Redmond, D. E. Jr. (1988) Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Research Bulletin 21(3):401–10.
Grilli, M., Zappettini, S., Zanardi, A., Lagomarsino, F., Pittaluga, A., Zoli, M. & Marchi, M. (2009) Exposure to an enriched environment selectively increases the functional response of the pre-synaptic NMDA receptors which modulate noradrenaline release in mouse hippocampus. Journal of Neurochemistry 110(5):1598–606. doi: 10.1111/j.1471-4159.2009.06265.x.
Groch, S., Wilhelm, I., Diekelmann, S., Sayk, F., Gais, S. & Born, J. (2011) Contribution of norepinephrine to emotional memory consolidation during sleep. Psychoneuroendocrinology 36(9):1342–50.
Haggerty, D. C., Glykos, V., Adams, N. E. & LeBeau, F. E. N. (2013) Bidirectional modulation of hippocampal gamma (20–80 Hz) frequency activity in vitro via alpha(α)- and beta(β)-adrenergic receptors (AR). Neuroscience 253(0):142–54. Available at:
Haider, B., Häusser, M. & Carandini, M. (2013) Inhibition dominates sensory responses in the awake cortex. Nature 493(7430):97100.
Han, J.-H., Kushner, S. A., Yiu, A. P., Cole, C. J., Matynia, A., Brown, R. A., Neve, R. L., Guzowski, J. F., Silva, A. J. & Josselyn, S. A. (2007) Neuronal competition and selection during memory formation. Science 316(5823):457–60.
Harley, C. W., Lalies, M. D. & Nutt, D. J. (1996) Estimating the synaptic concentration of norepinephrine in dentate gyrus which produces β-receptor mediated long-lasting potentiation in vivo using microdialysis and intracerebroventricular norepinephrine. Brain Research 710(1):293–98.
Harsay, H. A., Spaan, M., Wijnen, J. G. & Ridderinkhof, K. R. (2012) Error awareness and salience processing in the oddball task: Shared neural mechanisms. Frontiers in Human Neuroscience 6:246. doi: 10.3389/fnhum.2012.00246.
Harsing, L. G. & Matyus, P. (2013) Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: The role of synaptic and non-synaptic glycine transporters. Brain Research Bulletin 93:110–19.
Hasselmo, M. E., Linster, C., Patil, M., Ma, D. & Cekic, M. (1997) Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. Journal of Neurophysiology 77(6):3326–39.
Hatfield, T. & McGaugh, J. L. (1999) Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task. Neurobiology of Learning and Memory 71(2):232–39.
Headley, D. B. & Pare, D. (2013) In sync: Gamma oscillations and emotional memory. Frontiers in Behavioral Neuroscience 7. doi: 10.3389/fnbeh.2013.00170.
Headley, D. B. & Weinberger, N. M. (2011) Gamma-band activation predicts both associative memory and cortical plasticity. The Journal of Neuroscience 31(36):12748–58. doi: 10.1523/jneurosci.2528-11.2011.
Headley, D. B. & Weinberger, N. M. (2013) Fear conditioning enhances gamma oscillations and their entrainment of neurons representing the conditioned stimulus. The Journal of Neuroscience 33(13):5705–17. doi: 10.1523/jneurosci.4915-12.2013.
Hermans, E. J., Battaglia, F. P., Atsak, P., de Voogd, L. D., Fernández, G. & Roozendaal, B. (2014) How the amygdala affects emotional memory by altering brain network properties. Neurobiology of Learning and Memory 112:216.
Hermans, E. J., van Marle, H. J. F., Ossewaarde, L., Henckens, M., Qin, S. Z., van Kesteren, M. T. R., Schoots, V. C., Cousijn, H., Rijpkema, M., Oostenveld, R. & Fernandez, G. (2011) Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science 334(6059):1151–53. doi: 10.1126/science.1209603.
Herrero, I. & Sánchez-Prieto, J. (1996) cAMP-dependent facilitation of glutamate release by β-adrenergic receptors in cerebrocortical nerve terminals. Journal of Biological Chemistry 271(48):30554–60.
Hirata, A., Aguilar, J. & Castro-Alamancos, M. A. (2006) Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus. Journal of Neuroscience 26(16):4426–36. doi: 10.1523/jneurosci.5298-05.2006.
Hu, P., Stylos-Allan, M. & Walker, M. P. (2006) Sleep facilitates consolidation of emotional declarative memory. Psychological Science 17(10):891–98.
Huang, S., Huganir, R. L. & Kirkwood, A. (2013) Adrenergic gating of Hebbian spike-timing-dependent plasticity in cortical interneurons. The Journal of Neuroscience 33(32):13171–78. doi: 10.1523/jneurosci.5741-12.2013.
Huang, S., Rozas, C., Treviño, M., Contreras, J., Yang, S., Song, L., Yoshioka, T., Lee, H.-K. & Kirkwood, A. (2014) Associative Hebbian synaptic plasticity in primate visual cortex. The Journal of Neuroscience 34(22):7575–79.
Hurley, L., Devilbiss, D. & Waterhouse, B. (2004) A matter of focus: Monoaminergic modulation of stimulus coding in mammalian sensory networks. Current Opinion in Neurobiology 14(4):488–95.
Hutchinson, J. B. & Turk-Browne, N. B. (2012) Memory-guided attention: Control from multiple memory systems. Trends in Cognitive Sciences 16(12):576–79.
Itti, L. & Koch, C. (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40(10–12):1489–506. doi: 10.1016/S0042-6989(99)00163-7.
Javoy-Agid, F., Scatton, B., Ruberg, M., L'heureux, R., Cervera, P., Raisman, R., Maloteaux, J.-M., Beck, H. & Agid, Y. (1989) Distribution of monoaminergic, cholinergic, and GABAergic markers in the human cerebral cortex. Neuroscience 29(2):251–59.
Ji, X.-H., Cao, X.-H., Zhang, C.-L., Feng, Z.-J., Zhang, X.-H., Ma, L. & Li, B.-M. (2008) Pre- and postsynaptic β-adrenergic activation enhances excitatory synaptic transmission in layer V/VI pyramidal neurons of the medial prefrontal cortex of rats. Cerebral Cortex 18(7):1506–20. doi: 10.1093/cercor/bhm177.
Jodo, E., Chiang, C. & Aston-Jones, G. (1998) Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience 83(1):6379. Available at:
Johansen, J. P., Diaz-Mataix, L., Hamanaka, H., Ozawa, T., Ycu, E., Koivumaa, J., Kumar, A., Hou, M., Deisseroth, K. & Boyden, E. S. (2014) Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proceedings of the National Academy of Sciences of the United States of America 111(51):E5584–92.
Jones, B. E. (2004) Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Progress in Brain Research 145:157–69.
Jones, B. E. & Moore, R. Y. (1977) Ascending projections of the locus coeruleus in the rat: II. Autoradiographic study. Brain Research 127(1):2353. Available at:
Jones, S. M., Snell, L. D. & Johnson, K. M. (1987) Phencyclidine selectively inhibits N-methyl-D-aspartate-induced hippocampal [3H] norepinephrine release. Journal of Pharmacology and Experimental Therapeutics 240(2):492–97.
Kalaria, R., Andorn, A., Tabaton, M., Whitehouse, P., Harik, S. & Unnerstall, J. (1989) Adrenergic receptors in aging and Alzheimer's Disease: Increased β2-receptors in prefrontal cortex and hippocampus. Journal of Neurochemistry 53(6):1772–81.
Kandel, E. R. (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Molecular Brain 5(1):14.
Kaplan, R. L., Van Damme, I. & Levine, L. J. (2012) Motivation matters: Differing effects of pre-goal and post-goal emotions on attention and memory. Frontiers in Psychology 3: 404.
Katsuki, H., Izumi, Y. & Zorumski, C. F. (1997) Noradrenergic regulation of synaptic plasticity in the hippocampal CA1 region. Journal of Neurophysiology 77(6):3013–20.
Keil, A. & Ihssen, N. (2004) Identification facilitation for emotionally arousing verbs during the attentional blink. Emotion 4(1):2335. doi: 10.1037/1528-3542.4.1.23.
Keitel, C., Andersen, S. K., Quigley, C. & Müller, M. M. (2013) Independent effects of attentional gain control and competitive interactions on visual stimulus processing. Cerebral Cortex 23(4):940–46.
Kennedy, B. L. & Most, S. B. (2012) Perceptual, not memorial, disruption underlies emotion-induced blindness. Emotion 12(2):199202.
Kensinger, E. A. (2004) Remembering emotional experiences: The contribution of valence and arousal. Reviews in the Neurosciences 15(4):241–51.
Kensinger, E. A., Garoff-Eaton, R. J. & Schacter, D. L. (2007) Effects of emotion on memory specificity: Memory trade-offs elicited by negative visually arousing stimuli. Journal of Memory and Language 56(4):575–91. doi: 10.1016/j.jml.2006.05.004.
Kilpatrick, L. & Cahill, L. (2003) Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. NeuroImage 20(4):2091–99.
Klink, P. C., Jentgens, P. & Lorteije, J. A. (2014) Priority maps explain the roles of value, attention, and salience in goal-oriented behavior. The Journal of Neuroscience 34(42):13867–69.
Knight, M. & Mather, M. (2009) Reconciling findings of emotion-induced memory enhancement and impairment of preceding items. Emotion 9(6):763–81. doi: 10.1037/a0017281.
Knight, M., Seymour, T. L., Gaunt, J. T., Baker, C., Nesmith, K. & Mather, M. (2007) Aging and goal-directed emotional attention: Distraction reverses emotional biases. Emotion 7(4):705–14. doi: 10.1037/1528-3542.7.4.705.
Kobayashi, M., Kojima, M., Koyanagi, Y., Adachi, K., Imamura, K. & Koshikawa, N. (2009) Presynaptic and postsynaptic modulation of glutamatergic synaptic transmission by activation of α1- and β-adrenoceptors in layer V pyramidal neurons of rat cerebral cortex. Synapse 63(4):269–81. doi: 10.1002/syn.20604.
Kocsis, B., Li, S. & Hajos, M. (2007) Behavior-dependent modulation of hippocampal EEG activity by the selective norepinephrine reuptake inhibitor reboxetine in rats. Hippocampus 17(8):627–33. doi: 10.1002/hipo.20299.
Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J. & Monyer, H. (2010) NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68(3):557–69. Available at:
Krebs, R. M., Fias, W., Achten, E. & Boehler, C. N. (2013) Picture novelty attenuates semantic interference and modulates concomitant neural activity in the anterior cingulate cortex and the locus coeruleus. NeuroImage 74(0):179–87. Available at:
Kuhbandner, C. & Zehetleitner, M. (2011) Dissociable effects of valence and arousal in adaptive executive control. PLoS ONE 6(12):e29287.
Kuo, S. P. & Trussell, L. O. (2011) Spontaneous spiking and synaptic depression underlie noradrenergic control of feed-forward inhibition. Neuron 71(2):306–18.
LaBar, K. S. & Cabeza, R. (2006) Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience 7(1):5464.
Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I. & Schroeder, C. E. (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–13.
Lalies, M., Middlemiss, D. N. & Ransom, R. (1988) Stereoselective antagonism of NMDA-stimulated noradrenaline release from rat hippocampal slices by MK-801. Neuroscience Letters 91(3):339–42.
Lally, N., Mullins, P. G., Roberts, M. V., Price, D., Gruber, T. & Haenschel, C. (2014) Glutamatergic correlates of gamma-band oscillatory activity during cognition: A concurrent ER-MRS and EEG study. NeuroImage 85:823–33.
LaLumiere, R. T., Buen, T. V. & McGaugh, J. L. (2003) Post-training intra-basolateral amygdala infusions of norepinephrine enhance consolidation of memory for contextual fear conditioning. Journal of Neuroscience 23(17):6754–58.
Langer, S. Z. (2008) Presynaptic autoreceptors regulating transmitter release. Neurochemistry International 52(1/2):2630. Available at:
Leclerc, C. M. & Kensinger, E. A. (2008) Effects of age on detection of emotional information. Psychology and Aging 23(1):209–15.
Lee, J. L., Milton, A. L. & Everitt, B. J. (2006) Reconsolidation and extinction of conditioned fear: Inhibition and potentiation. The Journal of Neuroscience 26(39):10051–56.
Lee, T. H., Baek, J., Lu, Z. L. & Mather, M. (2014a) How arousal modulates the contrast sensitivity function. Emotion 5:978–84.
Lee, T. H., Itti, L. & Mather, M. (2012) Evidence for arousal-biased competition in perceptual learning. Frontiers in Emotion Science 3:241.
Lee, T. H., Sakaki, M., Cheng, R., Velasco, R. & Mather, M. (2014b) Emotional arousal amplifies the effects of biased competition in the brain. Social Cognitive and Affective Neuroscience 9(12):2067–77. doi: 10.1093/scan/nsu015.
Lehmann, J., Valentino, R. & Robine, V. (1992) Cortical norepinephrine release elicited in situ by N-methyl-D-aspartate (NMDA) receptor stimulation: A microdialysis study. Brain Research 599(1):171–74. Available at:
Levine, L. J. & Edelstein, R. S. (2009) Emotion and memory narrowing: A review and goal-relevance approach. Cognition and Emotion 23(5):833–75. doi: 10.1080/02699930902738863.
Levitt, P., Rakic, P. & Goldman-Rakic, P. (1984) Region-specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis. The Journal of Comparative Neurology 227(1):2336. doi: 10.1002/cne.902270105.
Liddell, B. J., Brown, K. J., Kemp, A. H., Barton, M. J., Das, P., Peduto, A., Gordon, E. & Williams, L. M. (2005) A direct brainstem–amygdala–cortical “alarm” system for subliminal signals of fear. NeuroImage 24(1):235–43.
Lim, S. L., Padmala, S. & Pessoa, L. (2009) Segregating the significant from the mundane on a moment-to-moment basis via direct and indirect amygdala contributions. Proceedings of the National Academy of Sciences of the United States of America 106(39):16841–46. doi: 10.1073/pnas.0904551106.
Liu, D. L. J., Graham, S. & Zorawski, M. (2008) Enhanced selective memory consolidation following post-learning pleasant and aversive arousal. Neurobiology of Learning and Memory 89(1):3646. doi: 10.1016/j.nlm.2007.09.001.
Liu, T.-L., Chen, D.-Y. & Liang, K. (2009) Post-training infusion of glutamate into the bed nucleus of the stria terminalis enhanced inhibitory avoidance memory: An effect involving norepinephrine. Neurobiology of Learning and Memory 91(4):456–65.
Livingstone, M. S. & Hubel, D. H. (1981) Effects of sleep and arousal on the processing of visual information in the cat. Nature 291(5816):554–61.
Luccini, E., Musante, V., Neri, E., Brambilla Bas, M., Severi, P., Raiteri, M. & Pittaluga, A. (2007) Functional interactions between presynaptic NMDA receptors and metabotropic glutamate receptors co-expressed on rat and human noradrenergic terminals. British Journal of Pharmacology 151(7):1087–94.
Luczak, A., Bartho, P. & Harris, K. D. (2013) Gating of sensory input by spontaneous cortical activity. The Journal of Neuroscience 33(4):1684–95.
Lüscher, C. & Malenka, R. C. (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harbor Perspectives in Biology 4(6). doi: 10.1101/cshperspect.a005710.
Lynch, M. (2004) Long-term potentiation and memory. Physiological Reviews 84(1):87136.
MacKay, D. G., Shafto, M., Taylor, J. K., Marian, D. E., Abrams, L. & Dyer, J. R. (2004) Relations between emotion, memory, and attention: Evidence from taboo Stroop, lexical decision, and immediate memory tasks. Memory and Cognition 32(3):474–88.
Madison, D. & Nicoll, R. (1982) Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299:636–38.
Magistretti, P. J., Morrison, J. H., Shoemaker, W. J., Sapin, V. & Bloom, F. E. (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: A possible regulatory mechanism for the local control of energy metabolism. Proceedings of the National Academy of Sciencesof the United States of America 78(10):6535–39.
Manaye, K. F., McIntire, D. D., Mann, D. M. A. & German, D. C. (1995) Locus-coeruleus cell loss in the aging human brain: A nonrandom process. Journal of Comparative Neurology 358(1):7987. doi: 10.1002/cne.903580105.
Markovic, J., Anderson, A. K. & Todd, R. M. (2014) Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behavioural Brain Research 259:229–41.
Marzo, A., Bai, J. & Otani, S. (2009) Neuroplasticity regulation by noradrenaline in mammalian brain. Current Neuropharmacology 7(4):286.
Marzo, A., Totah, N. K., Neves, R. M., Logothetis, N. K. & Eschenko, O. (2014) Unilateral electrical stimulation of rat locus coeruleus elicits bilateral response of norepinephrine neurons and sustained activation of medial prefrontal cortex. Journal of Neurophysiology 111(12):2570–88. doi: 10.1152/jn.00920.2013.
Mather, M. (2007) Emotional arousal and memory binding: An object-based framework. Perspectives on Psychological Science 2(1):3352. doi: 10.1111/j.1745-6916.2007.00028.x.
Mather, M. & Harley, C. W. (2016) The locus coeruleus: Essential for maintaining cognitive function and the aging brain. Trends in Cognitive Sciences 20:214–26.
Mather, M. & Knight, M. R. (2006) Angry faces get noticed quickly: Threat detection is not impaired among older adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences 61:P54P57.
Mather, M. & Sutherland, M. R. (2011) Arousal-biased competition in perception and memory. Perspectives on Psychological Science 6(2):114–33. doi: 10.1177/1745691611400234.
McGaugh, J. L. (2000). Memory: A century of consolidation. Science 287:248–51.
McGaugh, J. L. (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience 27:128.
McGaugh, J. L. (2013) Making lasting memories: Remembering the significant. Proceedings of the National Academy of Sciences of the United States of America 110(Suppl. 2):10402–407. doi: 10.1073/pnas.1301209110.
McIntyre, C. K., Hatfield, T. & McGaugh, J. L. (2002) Amygdala norepinephrine levels after training predict inhibitory avoidance retention performance in rats. European Journal of Neuroscience 16(7):1223–26.
McIntyre, C. K., McGaugh, J. L. & Williams, C. L. (2012) Interacting brain systems modulate memory consolidation. Neuroscience and Biobehavioral Reviews 36:1750–62.
Meldrum, B. S. (2000) Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. The Journal of Nutrition 130(4):1007S15S.
Menon, V. & Uddin, L. Q. (2010) Saliency, switching, attention and control: A network model of insula function. Brain Structure and Function 214(5/6):655–67. doi: 10.1007/s00429-010-0262-0.
Miranda, M. I. & McGaugh, J. L. (2004) Enhancement of inhibitory avoidance and conditioned taste aversion memory with insular cortex infusions of 8-Br-cAMP: Involvement of the basolateral amygdala. Learning and Memory 11(3):312–17. doi: 10.1101/lm.72804.
Misu, Y. & Kubo, T. (1986) Presynaptic β-adrenoceptors. Medicinal Research Reviews 6(2):197225.
Mobley, P. & Greengard, P. (1985) Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex. Proceedings of the National Academy of Sciences of the United States of America 82(3):945–47.
Mohanty, A., Gitelman, D. R., Small, D. M. & Mesulam, M. M. (2008) The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cerebral Cortex 18(11):2604–13. doi: 10.1093/cercor/bhn021.
Moncada, D., Ballarini, F., Martinez, M. C., Frey, J. U. & Viola, H. (2011) Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation. Proceedings of the National Academy of Sciences of the United States of America 108(31):12931–36. doi: 10.1073/pnas.1104495108.
Moncada, D. & Viola, H. (2007) Induction of long-term memory by exposure to novelty requires protein synthesis: Evidence for a behavioral tagging. The Journal of Neuroscience 27(28):7476–81. doi: 10.1523/jneurosci.1083-07.2007.
Montagrin, A., Brosch, T. & Sander, D. (2013) Goal conduciveness as a key determinant of memory facilitation. Emotion 13(4):622–28. doi: 10.1037/a0033066.
Moray, N. (1959) Attention in dichotic listening: Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology 11(1):5660.
Morrison, J. H. & Foote, S. L. (1986) Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in Old and New World monkeys. Journal of Comparative Neurology 243(1):117–38. doi: 10.1002/cne.902430110.
Most, S. B., Chun, M. M., Widders, D. M. & Zald, D. H. (2005) Attentional rubbernecking: Cognitive control and personality in emotion-induced blindness. Psychonomic Bulletin and Review 12(4):654–61.
Murphy, P. R., O'Connell, R. G., O'Sullivan, M., Robertson, I. H. & Balsters, J. H. (2014) Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping 35(8):4140–54.
Murray, B. D., Holland, A. C. & Kensinger, E. A. (2013) Episodic memory and emotion. In: Handbook of cognition and emotion, ed. Robinson, M. D., Watkins, E. & Harmon-Jones, E., pp. 156–75. Guilford Press.
Murty, V. P., Ritchey, M., Adcock, R. A. & LaBar, K. S. (2010) fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia 48(12):3459–69. doi: 10.1016/j.neuropsychologia.2010.07.030.
Murugaiah, K. D. & O'Donnell, J. M. (1995a) Beta adrenergic receptors facilitate norepinephrine release from rat hypothalamic and hippocampal slices. Research Communications in Molecular Pathology and Pharmacology 90(2):179–90.
Murugaiah, K. D. & O'Donnell, J. M. (1995b) Facilitation of noradrenaline release from rat brain slices by β-adrenoceptors. Naunyn-Schmiedeberg's Archives of Pharmacology 351(5):483–90.
Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y. & Malinow, R. (2014) Engineering a memory with LTD and LTP. Nature 511(7509):348–52. doi: 10.1038/nature13294.
Nai, Q., Dong, H.-W., Hayar, A., Linster, C. & Ennis, M. (2009) Noradrenergic regulation of GABAergic inhibition of main olfactory bulb mitral cells varies as a function of concentration and receptor subtype. Journal of Neurophysiology 101(5):2472–84.
Nelson, M. F., Zaczek, R. & Coyle, J. T. (1980) Effects of sustained seizures produced by intrahippocampal injection of kainic acid on noradrenergic neurons: Evidence for local control of norepinephrine release. Journal of Pharmacology and Experimental Therapeutics 214(3):694702.
Nicoll, R. A. (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241(4865):545–51.
Nielson, K. A. & Powless, M. (2007) Positive and negative sources of emotional arousal enhance long-term word-list retention when induced as long as 30 min after learning. Neurobiology of Learning and Memory 88(1):4047. doi: 10.1016/j.nlm.2007.03.005.
Niu, Y., Todd, R. & Anderson, A. K. (2012) Affective salience can reverse the effects of stimulus-driven salience on eye movements in complex scenes. Frontiers in Psychology 3:336. doi: 10.3389/fpsyg.2012.00336.
Nomura, S., Bouhadana, M., Morel, C., Faure, P., Cauli, B., Lambolez, B. & Hepp, R. (2014) Noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex. Frontiers in Cellular Neuroscience 8:247.
Oades, R. D. (1985) The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neuroscience and Biobehavioral Reviews 9(2):261–82.
O'Dell, T. J., Connor, S. A., Gelinas, J. N. & Nguyen, P. V. (2010) Viagra for your synapses: Enhancement of hippocampal long-term potentiation by activation of beta-adrenergic receptors. Cellular Signalling 22(5):728–36. doi: 10.1016/j.cellsig.2009.12.004.
O'Donnell, J., Zeppenfeld, D., McConnell, E., Pena, S. & Nedergaard, M. (2012) Norepinephrine: A neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochemical Research 37(11):2496–512. doi: 10.1007/s11064-012-0818-x.
Öhman, A., Flykt, A. & Esteves, F. (2001) Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General 130(3):466–78.
Oke, A., Keller, R., Mefford, I. & Adams, R. N. (1978) Lateralization of norepinephrine in human thalamus. Science 200(4348):1411–13.
Okubo, Y. & Iino, M. (2011) Visualization of glutamate as a volume transmitter. The Journal of Physiology 589(3):481–88.
Okubo, Y., Sekiya, H., Namiki, S., Sakamoto, H., Iinuma, S., Yamasaki, M., Watanabe, M., Hirose, K. & Iino, M. (2010) Imaging extrasynaptic glutamate dynamics in the brain. Proceedings of the National Academy of Sciences of the United States of America 107(14):6526–31.
Pacak, K. & Palkovits, M. (2001) Stressor specificity of central neuroendocrine responses: Implications for stress-related disorders. Endocrine Reviews 22(4):502–48.
Padmala, S., Lim, S.-L. & Pessoa, L. (2010) Pulvinar and affective significance: Responses track moment-to-moment stimulus visibility. Frontiers in Human Neuroscience 4. doi: 10.3389/fnhum.2010.00064.
Padmala, S. & Pessoa, L. (2008) Affective learning enhances visual detection and responses in primary visual cortex. Journal of Neuroscience 28(24):6202–10. doi: 10.1523/jneurosci.1233-08.2008.
Palamarchouk, V. S., Zhang, J.-J., Zhou, G., Swiergiel, A. H. & Dunn, A. J. (2000) Hippocampal norepinephrine-like voltammetric responses following infusion of corticotropin-releasing factor into the locus coeruleus. Brain Research Bulletin 51(4):319–26.
Parkhurst, D., Law, K. & Niebur, E. (2002) Modeling the role of salience in the allocation of overt visual attention. Vision Research 42(1):107–23.
Parpura, V. & Haydon, P. G. (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proceedings of the National Academy of Sciences of the United States of America 97(15):8629–34.
Paukert, M., Agarwal, A., Cha, J., Doze, V. A., Kang, J. U. & Bergles, D. E. (2014) Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82(6):1263–70.
Pawlak, V., Wickens, J. R., Kirkwood, A. & Kerr, J. N. (2010) Timing is not everything: Neuromodulation opens the STDP gate. Frontiers in Synaptic Neuroscience 2:146.
Payne, J. D., Chambers, A. M. & Kensinger, E. A. (2012) Sleep promotes lasting changes in selective memory for emotional scenes. Frontiers in Integrative Neuroscience 6:108. doi: 10.3389/fnint.2012.00108.
Payne, J. D., Stickgold, R., Swanberg, K. & Kensinger, E. A. (2008) Sleep preferentially enhances memory for emotional components of scenes. Psychological Science 19(8):781. doi: 10.1111/j.1467-9280.2008.02157.x.
Paz, R., Bauer, E. P. & Paré, D. (2008) Theta synchronizes the activity of medial prefrontal neurons during learning. Learning and Memory 15(7):524–31.
Pellerin, L. & Magistretti, P. J. (2012) Sweet sixteen for ANLS. Journal of Cerebral Blood Flow and Metabolism 32(7):1152–66.
Pessoa, L. (2009) How do emotion and motivation direct executive control? Trends in Cognitive Sciences 13(4):160–66.
Pessoa, L. (2013) The cognitive–emotional brain: From interactions to integration: MIT Press.
Pessoa, L. & Adolphs, R. (2010) Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews Neuroscience 11(11):773–83.
Petralia, R., Yokotani, N. & Wenthold, R. (1994) Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. Journal of Neuroscience 14(2):667–96.
Petroff, O. A. (2002) Book review: GABA and glutamate in the human brain. The Neuroscientist 8(6):562–73.
Phan, K. L., Wager, T., Taylor, S. F. & Liberzon, I. (2002) Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 16:331–48.
Phelps, E. A. (2004) Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology 14(2):198202.
Phelps, E. A., Ling, S. & Carrasco, M. (2006) Emotion facilitates perception and potentiates the perceptual benefits of attention. Psychological Science 17(4):292–99. doi: 10.1111/j.1467-9280.2006.01701.x.
Pittaluga, A. & Raiteri, M. (1990) Release-enhancing glycine-dependent presynaptic NMDA receptors exist on noradrenergic terminals of hippocampus. European Journal of Pharmacology 191(2):231–34.
Pittaluga, A. & Raiteri, M. (1992) N-Methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release: I. Location on axon terminals and pharmacological characterization. Journal of Pharmacology and Experimental Therapeutics 260(1):232–37.
Pittaluga, A., Fedele, E., Risiglione, C. & Raiteri, M. (1993) Age-related decrease of the NMDA receptor-mediated noradrenaline release in rat hippocampus and partial restoration by D-cycloserine. European Journal of Pharmacology 231(1):129–34.
Pittaluga, A., Pattarini, R., Andrioli, G. C., Viola, C., Munari, C. & Raiteri, M. (1999) Activity of putative cognition enhancers in kynurenate test performed with human neocortex slices. Journal of Pharmacology and Experimental Therapeutics 290(1):423–28.
Polack, P.-O., Friedman, J. & Golshani, P. (2013) Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nature Neuroscience 16(9):1331–39.
Ponzio, A. & Mather, M. (2014) Hearing something emotional affects memory for what was just seen: How arousal amplifies trade-off effects in memory consolidation. Emotion 14:1137–42.
Pourtois, G., Schettino, A. & Vuilleumier, P. (2013) Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology 92(3):492512.
Price, J. L. & Amaral, D. G. (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. The Journal of Neuroscience 1(11):1242–59.
Przybyslawski, J., Roullet, P. & Sara, S. J. (1999) Attenuation of emotional and nonemotional memories after their reactivation: Role of β adrenergic receptors. The Journal of Neuroscience 19(15):6623–28.
Ptak, R. (2012) The frontoparietal attention network of the human brain action, saliency, and a priority map of the environment. The Neuroscientist 18(5):502–15.
Purushothaman, G., Marion, R., Li, K. & Casagrande, V. A. (2012) Gating and control of primary visual cortex by pulvinar. Nature Neuroscience 15(6):905–12.
Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277(5328):968–71. doi: 10.2307/2892916.
Ramos, B. P. & Arnsten, A. F. T. (2007) Adrenergic pharmacology and cognition: Focus on the prefrontal cortex. Pharmacology and Therapeutics 113(3):523–36.
Ramos, B. P., Stark, D., Verduzco, L., van Dyck, C. H. & Arnsten, A. F. (2006) α2A-adrenoceptor stimulation improves prefrontal cortical regulation of behavior through inhibition of cAMP signaling in aging animals. Learning and Memory 13(6):770–76.
Rangel, S. & Leon, M. (1995) Early odor preference training increases olfactory bulb norepinephrine. Developmental Brain Research 85(2):187–91. Available at:
Rasch, B., Spalek, K., Buholzer, S., Luechinger, R., Boesiger, P., Papassotiropoulos, A. & Quervain, D. J. F. d. (2009) A genetic variation of the noradrenergic system is related to differential amygdala activation during encoding of emotional memories. Proceedings of the National Academy of Sciences of the United States of America 106(45):19191–96. doi: 10.2307/25593165.
Rauchs, G., Feyers, D., Landeau, B., Bastin, C., Luxen, A., Maquet, P. & Collette, F. (2011) Sleep contributes to the strengthening of some memories over others, depending on hippocampal activity at learning. The Journal of Neuroscience 31(7):2563–68. doi: 10.1523/jneurosci.3972-10.2011.
Reicher, G. M., Snyder, C. R. & Richards, J. T. (1976) Familiarity of background characters in visual scanning. Journal of Experimental Psychology: Human Perception and Performance 2(4):522.
Reimer, J., Froudarakis, E., Cadwell, C. R., Yatsenko, D., Denfield, G. H. & Tolias, A. S. (2014) Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84(2):355–62.
Reisberg, D. & Heuer, F. (2004) Memory for emotional events. In: Memory and emotion, ed. Reisberg, D. & Hertel, P., pp. 341. Oxford University Press.
Reynolds, J. H. & Desimone, R. (2003) Interacting roles of attention and visual salience in V4. Neuron 37(5):853–63.
Reynolds, J. H. & Heeger, D. J. (2009) The normalization model of attention. Neuron 61(2):168–85.
Richardson, M. P., Strange, B. A. & Dolan, R. J. (2004) Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nature Neuroscience 7(3):278–85.
Richter-Levin, G. & Akirav, I. (2003) Emotional tagging of memory formation – in the search for neural mechanisms. Brain Research Reviews 43(3):247–56.
Rinne, A., Birk, A. & Bünemann, M. (2013) Voltage regulates adrenergic receptor function. Proceedings of the National Academy of Sciences of the United States of America 110(4):1536–41.
Ritchey, M., Dolcos, F. & Cabeza, R. (2008) Role of amygdala connectivity in the persistence of emotional memories over time: An event-related fMRI investigation. Cerebral Cortex 18(11):2494–504. doi: 10.1093/cercor/bhm262.
Robertson, S. D., Plummer, N. W., de Marchena, J. & Jensen, P. (2013) Developmental origins of central norepinephrine neuron diversity. Nature Neuroscience 16(8):1016–23.
Robinson, R. B. & Siegelbaum, S. A. (2003) Hyperpolarization-activated cation currents: From molecules to physiological function. Annual Review of Physiology 65(1):453–80.
Roozendaal, B., Castello, N. A., Vedana, G., Barsegyan, A. & McGaugh, J. L. (2008) Noradrenergic activation of the basolateral amygdala modulates consolidation of object recognition memory. Neurobiology of Learning and Memory 90(3):576–79. doi: 10.1016/j.nlm.2008.06.010.
Rosanova, M. & Ulrich, D. (2005) Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. The Journal of Neuroscience 25(41):9398–405. doi: 10.1523/jneurosci.2149-05.2005.
Saalmann, Y. B. & Kastner, S. (2009) Gain control in the visual thalamus during perception and cognition. Current Opinion in Neurobiology 19(4):408–14.
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X. & Kastner, S. (2012) The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337(6095):753–56. doi: 10.1126/science.1223082.
Sadaghiani, S. & D'Esposito, M. (2014) Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cerebral Cortex. doi: 10.1093/cercor/bhu072
Sakaki, M., Fryer, K. & Mather, M. (2014a) Emotion strengthens high priority memory traces but weakens low priority memory traces. Psychological Science 25(2):387–95. doi: 10.1177/0956797613504784
Saletin, J. M., Goldstein, A. N. & Walker, M. P. (2011) The role of sleep in directed forgetting and remembering of human memories. Cerebral Cortex 21(11):2534–41. doi: 10.1093/cercor/bhr034.
Salgado, H., Garcia-Oscos, F., Martinolich, L., Hall, S., Restom, R., Tseng, K. Y. & Atzori, M. (2012a) Pre- and postsynaptic effects of norepinephrine on γ-aminobutyric acid-mediated synaptic transmission in layer 2/3 of the rat auditory cortex. Synapse 66(1):2028.
Salgado, H., Kohr, G. & Trevino, M. (2012b) Noradrenergic “tone” determines dichotomous control of cortical spike-timing-dependent plasticity. Scientific Reports 2:7. doi: 417 10.1038/srep00417.
Samuels, E. R. & Szabadi, E. (2008a) Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function. Part I. Principles of functional organisation. Current Neuropharmacology 6(3):235–53. doi: 10.2174/157015908785777229.
Samuels, E. R. & Szabadi, E. (2008b) Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function. Part II. Physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Current Neuropharmacology 6(3):254–85. doi: 10.2174/157015908785777193.
Sander, D., Grafman, J. & Zalla, T. (2003) The human amygdala: An evolved system for relevance detection. Reviews in the Neurosciences 14(4):303–16.
Sara, S. J. (2009) The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience 10(3):211–23.
Sara, S. J. (2010) Reactivation, retrieval, replay and reconsolidation in and out of sleep: Connecting the dots. Frontiers in Behavioral Neuroscience 4. doi: 10.3389/fnbeh.2010.00185.
Sara, S. J. & Bouret, S. (2012) Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron 76(1):130–41. doi: 10.1016/j.neuron.2012.09.011.
Sara, S. J. & Segal, M. (1991) Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: Implications for cognition. Progress in Brain Research 88:571–85.
Saunders, C. & Limbird, L. E. (1999) Localization and trafficking of α2-adrenergic receptor subtypes in cells and tissues. Pharmacology and Therapeutics 84(2):193205.
Schoenbaum, G. & Roesch, M. R. (2005) Orbitofrontal cortex, associative learning, and expectancies. Neuron 47(5):633–36.
Schwarze, U., Bingel, U. & Sommer, T. (2012) Event-related nociceptive arousal enhances memory consolidation for neutral scenes. The Journal of Neuroscience 32(4):1481–87.
Sears, R. M., Fink, A. E., Wigestrand, M. B., Farb, C. R., de Lecea, L. & LeDoux, J. E. (2013) Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus. Proceedings of the National Academy of Sciences of the United States of America 110(50):20260–65.
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L. & Greicius, M. D. (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience 27(9):2349–56.
Segal, M. & Bloom, F. E. (1976) The action of norepinephrine in the rat hippocampus: IV. The effects of locus coeruleus stimulation on evoked hippocampal unit activity. Brain Research 107(3):513–25.
Segal, S. K. & Cahill, L. (2009) Endogenous noradrenergic activation and memory for emotional material in men and women. Psychoneuroendocrinology 34(9):1263–71. doi: 10.1016/j.psyneuen.2009.04.020.
Segal, S. K., Stark, S. M., Kattan, D., Stark, C. E. & Yassa, M. A. (2012) Norepinephrine-mediated emotional arousal facilitates subsequent pattern separation. Neurobiology of Learning and Memory 97(4):465–69.
Serences, J. T. & Yantis, S. (2007) Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Cerebral Cortex 17(2):284–93.
Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J. & Davidson, R. J. (2011) The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience 12(3):154–67.
Sherman, S. M. (2005) Thalamic relays and cortical functioning. Progress in Brain Research 149:107–26.
Sheth, S. A., Mian, M. K., Patel, S. R., Asaad, W. F., Williams, Z. M., Dougherty, D. D., Bush, G. & Eskandar, E. N. (2012) Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488(7410):218–21.
Shipp, S. (2003) The functional logic of cortico-pulvinar connections. Philosophical Transactions: Biological Sciences 358(1438):1605–24. doi: 10.2307/3558264.
Shumikhina, S. & Molotchnikoff, S. (1999) Pulvinar participates in synchronizing neural assemblies in the visual cortex, in cats. Neuroscience Letters 272(2):135–39.
Sidlauskaite, J., Wiersema, J. R., Roeyers, H., Krebs, R. M., Vassena, E., Fias, W., Brass, M., Achten, E. & Sonuga-Barke, E. (2014) Anticipatory processes in brain state switching – Evidence from a novel cued-switching task implicating default mode and salience networks. NeuroImage 98:359–65.
Singer, W. (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology 55(1):349–74. doi: 10.1146/
Skelly, L. R. & Decety, J. (2012) Passive and motivated perception of emotional faces: Qualitative and quantitative changes in the face processing network. PLoS ONE 7(6):e40371. doi: 10.1371/journal.pone.0040371.
Sladek, J. R. Jr. & Sladek, C. D. (1978) Relative quantitation of monoamine histofluorescence in young and old non-human primates. In: Parkinson's disease – II: Aging and neuroendocrine relationships, ed. Finch, C. E., Potter, D. & Kenny, A. D., pp. 231–39. Springer.
Smith, S. D., Most, S. B., Newsome, L. A. & Zald, D. H. (2006) An emotion-induced attentional blink elicited by aversively conditioned stimuli. Emotion 6(3):523–27.
Sohal, V. S., Zhang, F., Yizhar, O. & Deisseroth, K. (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698702.
Soltani, A. & Koch, C. (2010) Visual saliency computations: Mechanisms, constraints, and the effect of feedback. The Journal of Neuroscience 30(38):12831–43.
Sorg, O. & Magistretti, P. J. (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Research 563(1):227–33.
Starke, K. (2001). Presynaptic autoreceptors in the third decade: Focus on α2-adrenoceptors. Journal of Neurochemistry 78(4):685–93.
Steblay, N. M. (1992) A metaanalytic review of the weapon focus effect. Law and Human Behavior 16(4):413–24. doi: 10.1007/BF02352267.
Sterpenich, V., D'Argembeau, A., Desseilles, M., Balteau, E., Albouy, G., Vandewalle, G., Degueldre, C., Luxen, A., Collette, F. & Maquet, P. (2006) The locus ceruleus is involved in the successful retrieval of emotional memories in humans. The Journal of Neuroscience 26(28):7416–23. Available at:
Strange, B. A. & Dolan, R. J. (2004) Beta-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proceedings of the National Academy of Sciences of the United States of America 101(31):11454–58.
Strange, B. A. & Dolan, R. J. (2007) Beta-adrenergic modulation of oddball responses in humans. Behavioral and Brain Functions 3:29.
Strange, B. A., Hurlemann, R. & Dolan, R. J. (2003) An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent. Proceedings of the National Academy of Sciences of the United States of America 100(23):13626–31. Available at:
Straube, T., Korz, V., Balschun, D. & Frey, J. U. (2003) Requirement of beta-adrenergic receptor activation and protein synthesis for LTP-reinforcement by novelty in rat dentate gyrus. The Journal of Physiology 552(3):953–60. doi: 10.1113/jphysiol.2003.049452.
Sutherland, M. R., Lee, T. H. & Mather, M. (under review) Arousal impairs top-down prioritization in selective attention.
Sutherland, M. R. & Mather, M. (2012) Negative arousal amplifies the effects of saliency in short-term memory. Emotion 12:1367–72. doi: 10.1037/a0027860.
Sutherland, M. R. & Mather, M. (under review) Both positive and negative arousing sounds increase the impact of visual salience.
Sutherland, M. R., McQuiggan, D. A., Ryan, J. D. & Mather, M. (in press) Perceptual salience does not influence emotional arousal's impairing effects on top-down attention. Emotion
Sved, A. F., Cano, G., Passerin, A. M. & Rabin, B. S. (2002) The locus coeruleus, Barrington's nucleus, and neural circuits of stress. Physiology and Behavior 77(4):737–42.
Swanson, L. W. & Hartman, B. K. (1975) The central adrenergic system: An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-B-hydroxylase as a marker. The Journal of Comparative Neurology 163(4):467505. doi: 10.1002/cne.901630406.
Talmi, D. (2013) Enhanced emotional memory: Cognitive and neural mechanisms. Current Directions in Psychological Science 22(6):430–36.
Tamietto, M. & de Gelder, B. (2010) Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience 11(10):697709.
Tenorio, G., Connor, S. A., Guévremont, D., Abraham, W. C., Williams, J., O'Dell, T. J. & Nguyen, P. V. (2010) “Silent” priming of translation-dependent LTP by β-adrenergic receptors involves phosphorylation and recruitment of AMPA receptors. Learning and Memory 17(12):627–38.
Terakado, M. (2014) Adrenergic regulation of GABA release from presynaptic terminals in rat cerebral cortex. Cortex 56:4957.
Todd, R. M., Müller, D. J., Lee, D. H., Robertson, A., Eaton, T., Freeman, N., Palombo, D. J., Levine, B. & Anderson, A. K. (2013) Genes for emotion-enhanced remembering are linked to enhanced perceiving. Psychological Science 24(11):2244–53. doi: 10.1177/0956797613492423.
Todd, R. M., Palombo, D. J., Levine, B. & Anderson, A. K. (2011) Genetic differences in emotionally enhanced memory. Neuropsychologia 49(4):734–44.
Tooley, V., Brigham, J. C., Maass, A. & Bothwell, R. K. (1987) Facial recognition: Weapon effect and attentional focus. Journal of Applied Social Psychology 17(10):845–59.
Tose, R., Kushikata, T., Yoshida, H., Kudo, M., Furukawa, K., Ueno, S. & Hirota, K. (2009) Interaction between orexinergic neurons and NMDA receptors in the control of locus coeruleus–cerebrocortical noradrenergic activity of the rat. Brain Research 1250:8187.
Toussay, X., Basu, K., Lacoste, B. & Hamel, E. (2013) Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. The Journal of Neuroscience 33(8):3390–401. doi: 10.1523/jneurosci.3346-12.2013.
Traynelis, S. F., Wollmuth, L. P., McBain, C. J., Menniti, F. S., Vance, K. M., Ogden, K. K., Hansen, K. B., Yuan, H., Myers, S. J. & Dingledine, R. (2010) Glutamate receptor ion channels: Structure, regulation, and function. Pharmacological Reviews 62(3):405–96.
Treisman, A. (1998) Feature binding, attention and object perception. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 353(1373):1295–306.
Treviño, M., Frey, S. & Köhr, G. (2012a) Alpha-1 adrenergic receptors gate rapid orientation-specific reduction in visual discrimination. Cerebral Cortex 22(11):2529–41. doi: 10.1093/cercor/bhr333.
Treviño, M., Huang, S., He, K., Ardiles, A., De Pasquale, R., Guo, Y., Palacios, A., Huganir, R. L. & Kirkwood, A. (2012b) Pull–push neuromodulation of LTP and LTD enables bidirectional experience-induced synaptic scaling in visual cortex. Neuron 73(3):497510.
Troiani, V. & Schultz, R. T. (2013) Amygdala, pulvinar & inferior parietal cortex contribute to early processing of faces without awareness. Frontiers in Human Neuroscience 7:241. doi: 10.3389/fnhum.2013.00241.
Tully, K. & Bolshakov, V. Y. (2010) Emotional enhancement of memory: How norepinephrine enables synaptic plasticity. Molecular Brain 3(1):15.
Uddin, L. Q. (2015) Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience 16(1):5561.
Ueda, H., Goshima, Y., Kubo, T. & Misu, Y. (1985) Involvement of epinephrine in the presynaptic beta adrenoceptor mechanism of norepinephrine release from rat hypothalamic slices. Journal of Pharmacology and Experimental Therapeutics 232(2):507–12.
Ul Haq, R., Liotta, A., Kovacs, R., Rösler, A., Jarosch, M. J., Heinemann, U. & Behrens, C. J. (2012) Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices. Hippocampus 22(3):516–33. doi: 10.1002/hipo.20918.
Ullsperger, M., Harsay, H., Wessel, J. & Ridderinkhof, K. R. (2010) Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function 214(5/6):629–43. doi: 10.1007/s00429-010-0261-1.
Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J. & Aston-Jones, G. (1999) The role of locus coeruleus in the regulation of cognitive performance. Science 283(5401):549–54.
Valentino, R. J. & Van Bockstaele, E. (2001) Opposing regulation of the locus coeruleus by corticotropin-releasing factor and opioids. Psychopharmacology 158(4):331–42.
Van Bockstaele, E., Bajic, D., Proudfit, H. & Valentino, R. (2001) Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiology and Behavior 73(3):273–83.
Van Bockstaele, E. J., Colago, E. E. O. & Valentino, R. J. (1998) Amygdaloid corticotropin-releasing factor targets locus coeruleus dendrites: Substrate for the co-ordination of emotional and cognitive limbs of the stress response. Journal of Neuroendocrinology 10(10):743–58. doi: 10.1046/j.1365-2826.1998.00254.x.
Van Horn, M. R., Sild, M. & Ruthazer, E. S. (2013) D-Serine as a gliotransmitter and its roles in brain development and disease. Frontiers in Cellular Neuroscience 7:39. doi: 10.3389/fncel.2013.00039.
Vankov, A., Hervé-Minvielle, A. & Sara, S. J. (1995) Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. European Journal of Neuroscience 7(6):1180–87. doi: 10.1111/j.1460-9568.1995.tb01108.x.
Varga, C., Oijala, M., Lish, J., Szabo, G. G., Bezaire, M., Marchionni, I., Golshani, P. & Soltesz, I. (2014) Functional fission of parvalbumin interneuron classes during fast network events. eLife 3:e04006. doi: 10.7554/eLife.04006.
Vazey, E. M. & Aston-Jones, G. (2014) Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proceedings of the National Academy of Sciences of the United States of America 111(10):3859–64.
Vezzani, A., Wu, H. Q. & Samanin, R. (1987) [3H]Norepinephrine release from hippocampal slices is an in vitro biochemical tool for investigating the pharmacological properties of excitatory amino acid receptors. Journal of Neurochemistry 49(5):1438–42.
Vijayashankar, N. & Brody, H. (1979) Quantitative study of the pigmented neurons in the nuclei locus coeruleus and subcoeruleus in man as related to aging. Journal of Neuropathology and Experimental Neurology 38(5):490–97. doi: 10.1097/00005072-197909000-00004.
Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. (2014) Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86(3):740754.
Vizi, E., Fekete, A., Karoly, R. & Mike, A. (2010) Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. British Journal of Pharmacology 160(4):785809.
Von der Gablentz, J., Tempelmann, C., Münte, T. & Heldmann, M. (2015) Performance monitoring and behavioral adaptation during task switching: An fMRI study. Neuroscience 285:227–35.
Von Stein, A. & Sarnthein, J. (2000) Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology 38(3):301–13.
Vuilleumier, P. (2005b) How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences 9(12):585–94.
Walling, S. G., Brown, R. A. M., Milway, J. S., Earle, A. G. & Harley, C. W. (2011) Selective tuning of hippocampal oscillations by phasic locus coeruleus activation in awake male rats. Hippocampus 21(11):1250–62. doi: 10.1002/hipo.20816.
Walls, A. B., Heimbürger, C. M., Bouman, S. D., Schousboe, A. & Waagepetersen, H. S. (2009) Robust glycogen shunt activity in astrocytes: Effects of glutamatergic and adrenergic agents. Neuroscience 158(1):284–92.
Wang, J. K., Andrews, H. & Thukral, V. (1992) Presynaptic glutamate receptors regulate noradrenaline release from isolated nerve terminals. Journal of Neurochemistry 58(1):204–11.
Wang, L., Kennedy, B. L. & Most, S. B. (2012) When emotion blinds: A spatiotemporal competition account of emotion-induced blindness. Frontiers in Psychology 3:438. doi: 10.3389/fpsyg.2012.00438.
Wang, M., Ramos, B., Paspalas, C., Shu, Y., Simen, A., Duque, A., Vijayraghavan, S., Brennan, A., Dudley, A., Nou, E., Mazer, J. A., McCormick, D. A. & Arnsten, A. F. T. (2007) Alpha2A-adrenoceptor stimulation strengthens working memory networks by inhibiting cAMP–HCN channel signaling in prefrontal cortex. Cell 129:397410.
Wang, Z. & McCormick, D. A. (1993) Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S, 3R-ACPD. The Journal of Neuroscience 13(5):2199–216.
Waring, J. D. & Kensinger, E. A. (2011) How emotion leads to selective memory: Neuroimaging evidence. Neuropsychologia 49(7):1831–42.
Waterhouse, B. D. & Woodward, D. J. (1980) Interaction of norepinephrine with cerebrocortical activity evoked by stimulation of somatosensory afferent pathways in the rat. Experimental Neurology 67(1):1134. Available at:
Weierich, M. R., Wright, C. I., Negreira, A., Dickerson, B. C. & Barrett, L. F. (2010) Novelty as a dimension in the affective brain. NeuroImage 49(3):2871–78.
Wieser, M. J., McTeague, L. M. & Keil, A. (2011) Sustained preferential processing of social threat cues: Bias without competition? Journal of Cognitive Neuroscience 23(8):1973–86.
Wilson, R. S., Nag, S., Boyle, P. A., Hizel, L. P., Yu, L., Buchman, A. S., Schneider, J. A. & Bennett, D. A. (2013) Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology 80(13):1202–208.
Wolosker, H. (2007) NMDA receptor regulation by D-serine: New findings and perspectives. Molecular Neurobiology 36(2):152–64.
Wulff, P., Ponomarenko, A. A., Bartos, M., Korotkova, T. M., Fuchs, E. C., Bähner, F., Both, M., Tort, A. B. L., Kopell, N. J., Wisden, W. & Monyer, H. (2009) Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proceedings of the National Academy of Sciences of the United States of America 106(9):3561–66. doi: 10.1073/pnas.0813176106.
Xue, M., Atallah, B. V. & Scanziani, M. (2014) Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 511(7511):596600.
Yellin, D., Berkovich-Ohana, A. & Malach, R. (2015) Coupling between pupil fluctuations and resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex. NeuroImage 106:414–27.
Yu, A. J. & Dayan, P. (2005) Uncertainty, neuromodulation, and attention. Neuron 46(4):681–92. Available at:
Yue, B. W. & Huguenard, J. R. (2001) The role of H-current in regulating strength and frequency of thalamic network oscillations. Thalamus and Related Systems 1(02):95103.
Zhou, Y., Won, J., Karlsson, M. G., Zhou, M., Rogerson, T., Balaji, J., Neve, R., Poirazi, P. & Silva, A. J. (2009) CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nature Neuroscience 12(11):1438–43.
Zhu, H., Brodsky, M., Gorman, A. L. & Inturrisi, C. E. (2003) Region-specific changes in NMDA receptor mRNA induced by chronic morphine treatment are prevented by the co-administration of the competitive NMDA receptor antagonist LY274614. Molecular Brain Research 114(2):154–62.
Zilles, K. & Amunts, K. (2009) Receptor mapping: Architecture of the human cerebral cortex. Current Opinion in Neurology 22(4):331–39.
Zitnik, G. A., Clark, B. D. & Waterhouse, B. D. (2014) Effects of intracerebroventricular corticotropin releasing factor on sensory-evoked responses in the rat visual thalamus. Brain Research 1561:3547. Available at: