Hostname: page-component-68c7f8b79f-bmrcd Total loading time: 0 Render date: 2026-01-01T08:16:51.978Z Has data issue: false hasContentIssue false

Visual Attention in Crisis

Published online by Cambridge University Press:  03 May 2024

Ruth Rosenholtz*
Affiliation:
Department of Brain & Cognitive Sciences, CSAIL, Massachusetts Institute of Technology, USA rruth@mit.edu
*
Corresponding author: Ruth Rosenholtz; Email: rruth@mit.edu

Short abstract

Recent research on peripheral vision has led to a paradigm-shifting conclusion: vision science as a field must rethink visual attention. This article reviews the evidence for a crisis in attention science and examines supposedly attentional phenomena to ask which point to additional capacity limits. Based on the resulting list of critical phenomena, and what they have in common, I propose an alternative way to think about capacity limits and the underlying mechanisms.

Information

Type
Target Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Al-Janabi, S., & Greenberg, A. S. (2016). Target-object integration, attention distribution, and object orientation interactively modulate object-based selection. Attention, Perception, & Psychophysics, 78(7), 19681984.10.3758/s13414-016-1126-3CrossRefGoogle ScholarPubMed
Alvarez, G. A., & Franconeri, S. L. (2007). How many objects can you track?: Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 7(13), 14.10.1167/7.13.14CrossRefGoogle ScholarPubMed
Anderson, B. (2011). There is no such thing as attention. Frontiers in Psychology, 2, 246.10.3389/fpsyg.2011.00246CrossRefGoogle Scholar
Anton-Erxleben, K. A., Henrich, C., & Treue, S. (2007). Attention changes perceived size of moving visual patterns. Journal of Vision, 7(11), 5.10.1167/7.11.5CrossRefGoogle ScholarPubMed
Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12(2), 157162.10.1111/1467-9280.00327CrossRefGoogle ScholarPubMed
Balas, B. J. (2016). Seeing number using texture: How summary statistics account for reductions in perceived numerosity in the visual periphery. Attention, Perception, & Psychophysics, 78(8), 23132319.10.3758/s13414-016-1204-6CrossRefGoogle ScholarPubMed
Balas, B. J., Nakano, L., & Rosenholtz, R. (2009). A summary-statistic representation in peripheral vision explains visual crowding. Journal of Vision, 8(12), 13. doi: 10.1167/9.12.13 CrossRefGoogle Scholar
Bouma, H. (1970). Interactional effects in parafoveal letter recognition. Nature, 226, 177178.10.1038/226177a0CrossRefGoogle ScholarPubMed
Braun, J., & Julesz, B. (1998). Withdrawing attention at little or no cost: Detection and discrimination tasks. Perception & Psychophysics, 60(1), 112.10.3758/BF03211915CrossRefGoogle ScholarPubMed
Carrasco, M. (2011). Visual attention: the past 25 years. Vision Research, 51(13), 14841525.10.1016/j.visres.2011.04.012CrossRefGoogle ScholarPubMed
Chaney, W., Fischer, J., & Whitney, D. (2014). The hierarchical sparse selection model of visual crowding. Frontiers in Integrative Neuroscience, 8(73), 111. doi: 10.3389/fnint.2014.00073 CrossRefGoogle ScholarPubMed
Chang, H., & Rosenholtz, R. (2016). Search performance is better predicted by tileability than by the presence of a unique basic feature. Journal of Vision, 16(10), 13.10.1167/16.10.13CrossRefGoogle ScholarPubMed
Chen, N., Shin, K., Millin, R., Song, Y., Kwon, M., & Tjan, B. S. (2019). Cortical reorganization of peripheral vision induced by simulated central vision loss. Journal of Neuroscience, 39(18), 35293536.Google ScholarPubMed
Chen, Z., & Cave, K. R. (2019). When is object-based attention not based on objects? Journal of Experimental Psychology: Human Perception and Performance, 45(8), 10621082.Google Scholar
Chen, Z., Cave, K. R., Basu, D., Suresh, S., & Wiltshire, J. (2020). A region complexity effect masquerading as object-based attention. Journal of Vision, 20(7), 24.10.1167/jov.20.7.24CrossRefGoogle ScholarPubMed
Chong, S.-C., & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43(4), 393404.10.1016/S0042-6989(02)00596-5CrossRefGoogle ScholarPubMed
Chong, S.-C., & Treisman, A. (2005). Attentional spread in the statistical processing of visual displays. Perception & Psychophysics, 66, 12821294.Google Scholar
Chun, M. M., Golumb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73101.10.1146/annurev.psych.093008.100427CrossRefGoogle ScholarPubMed
Cohen, A., & Ivry, R. (1989). Illusory conjunctions inside and outside the focus of attention. Journal of Experimental Psychology: Human Perception and Performance, 15(4), 650663.Google ScholarPubMed
Cohen, M. A., Alvarez, G. A., & Nakayama, K. (2011). Natural-scene perception requires attention. Psych. Science, 22(9), 11651172.10.1177/0956797611419168CrossRefGoogle ScholarPubMed
Cohen, M. A., Dennett, D. C., & Kanwisher, N. (2016). What is the bandwidth of perceptual experience? Trends in Cognitive Sciences, 20(5), 324335.10.1016/j.tics.2016.03.006CrossRefGoogle Scholar
Davis, E. T., Kramer, P., & Graham, N. (1983). Uncertainty about spatial frequency, spatial position, or contrast of visual patterns. Perception and Psychophysics, 33(1), 2028.10.3758/BF03205862CrossRefGoogle ScholarPubMed
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193222.10.1146/annurev.ne.18.030195.001205CrossRefGoogle ScholarPubMed
Deutsch, J. A., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological Review, 70, 8090.10.1037/h0039515CrossRefGoogle ScholarPubMed
Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology: General, 123(2), 161177.10.1037/0096-3445.123.2.161CrossRefGoogle ScholarPubMed
Ehinger, K. A., & Rosenholtz, R. (2016). A general account of peripheral encoding also predicts scene perception performance. Journal of Vision, 16(2), 13.10.1167/16.2.13CrossRefGoogle ScholarPubMed
Ellis, S. R., & Stark, L. (1978). Eye movements during the viewing of Necker cubes. Perception, 7, 575581.10.1068/p070575CrossRefGoogle ScholarPubMed
Eriksen, C. W., & Lappin, J. S. (1967). Selective attention and very short-term recognition memory for nonsense forms. Journal of Experimental Psychology, 73(3), 358364.10.1037/h0024253CrossRefGoogle ScholarPubMed
Eriksen, C. W., & Rohrbaugh, J. (1970). Visual masking in multielement displays. Journal of Experimental Psychology, 83(1, pt. 1), 147154.10.1037/h0028515CrossRefGoogle ScholarPubMed
Eriksen, C. W., & Webb, J. M. (1989). Shifting of attentional focus within and about a visual display. Perception & Psychophysics, 45(2), 175183.10.3758/BF03208052CrossRefGoogle ScholarPubMed
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Perception & Performance, 18(4), 10301044.Google ScholarPubMed
Fortenbaugh, F. C., Prinzmetal, W., & Robertson, L. C. (2011). Rapid changes in visual-spatial attention distort object shape. Psychonomic Bulletin & Review, 18, 287294.10.3758/s13423-011-0061-5CrossRefGoogle ScholarPubMed
Fougnie, D., Cockhren, J., & Marois, R. (2018). A common source of attention for auditory and visual tracking. Attention, Perception, & Psychophysics, 80, 15711583.10.3758/s13414-018-1524-9CrossRefGoogle ScholarPubMed
Francis, G., & Thunell, E. (2022). Excess success in articles on object-based attention. Attention, Perception, & Psychophysics, 84, 700714.10.3758/s13414-022-02459-6CrossRefGoogle ScholarPubMed
Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources: Competitive content maps for attention and memory. Trends in Cognitive Sciences, 17(3), 134141.10.1016/j.tics.2013.01.010CrossRefGoogle ScholarPubMed
Freeman, J., & Simoncelli, E. P. (2011). Metamers of the ventral stream. Nature Neuroscience, 14(9), 11951201.10.1038/nn.2889CrossRefGoogle ScholarPubMed
Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (2013). A functional and perceptual signature of the second visual area in primates. Nature Neuroscience, 16, 974981.10.1038/nn.3402CrossRefGoogle ScholarPubMed
Gaspar, J. G., Ward, N., Neider, M. B., Crowell, J., Carbonari, R., Kaczmarski, H., … Loschky, L. C. (2016). Measuring the Useful Field of View during simulated driving with gaze-contingent displays. Human Factors, 58(4), 630641.10.1177/0018720816642092CrossRefGoogle ScholarPubMed
Gingerich, O. (1975). ’Crisis’ versus aesthetic in the Copernican Revolution. In Beer, A. (Ed.), Vistas in Astronomy (Vol. 17, pp. 8594). Oxford: Pergamon.Google Scholar
Gobell, J. L., Tseng, C.-H., & Sperling, G. (2004). The spatial distribution of visual attention. Vision Research, 44(12), 12731296.10.1016/j.visres.2004.01.012CrossRefGoogle ScholarPubMed
Greene, M. R., & Oliva, A. (2009). Recognition of natural scenes from global properties: Seeing the forest without representing the trees. Cognitive Psychology, 58(2), 137176.10.1016/j.cogpsych.2008.06.001CrossRefGoogle ScholarPubMed
Grindley, G. C., & Townsend, V. (1968). Voluntary attention in peripheral vision and its effects on acuity and differential thresholds. Quarterly Journal of Experimental Psychology, 20(1), 1119.10.1080/14640746808400123CrossRefGoogle Scholar
Haberman, J., & Whitney, D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception & Performance, 35(3), 718734.Google ScholarPubMed
Heliocentrism. (2023, December 19). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Heliocentrism 10.1515/9783839458624-005CrossRefGoogle Scholar
Hommel, B., Chapman, C. S., Cisek, P., Neyedli, H. F., Song, J.-H., & Welsh, T. N. (2019). No one knows what attention is. Attention, Perception, & Psychophysics, 81, 22882303.10.3758/s13414-019-01846-wCrossRefGoogle ScholarPubMed
Houtkamp, R., Spekreijse, H., & Roelfsema, P. R. (2003). A gradual spread of attention during mental curve tracing. Perception & Psychophysics, 65(7), 11361144.10.3758/BF03194840CrossRefGoogle ScholarPubMed
Huang, L., & Pashler, H. (2007). A Boolean map theory of visual attention. Psychological Review, 114(3), 599631.10.1037/0033-295X.114.3.599CrossRefGoogle ScholarPubMed
Huang, L., & Pashler, H. (2009). Reversing the attention effect in figure-ground perception. Psychological Science, 20(10), 11991201.10.1111/j.1467-9280.2009.02424.xCrossRefGoogle ScholarPubMed
Huestegge, L., & Bröcker, A. (2016). Out of the corner of the driver’s eye: Peripheral processing of hazards in static traffic scenes. Journal of Vision, 16(2), 11.10.1167/16.2.11CrossRefGoogle ScholarPubMed
Hyman, I. E., Boss, S. M., Wise, B. M., McKenzie, K. E., & Caggiano, J. M. (2010). Did you see the unicycling clown? Inattentional blindness while walking and talking on a cell phone. Applied Cognitive Psychology, 24(5), 597607.10.1002/acp.1638CrossRefGoogle Scholar
Hyman, I. E., Sarb, B. A., & Wise-Swanson, B. M. (2014). Failure to see money on a tree: inattentional blindness for objects that guided behavior. Frontiers in Psychology, 5, 356.10.3389/fpsyg.2014.00356CrossRefGoogle ScholarPubMed
Intriligator, J., & Cavanagh, P. (2001). The spatial resolution of visual attention. Cogn. Psychol., 43, 171216.10.1006/cogp.2001.0755CrossRefGoogle ScholarPubMed
James, W. (1890). Principles of Psychology. New York: Holt.Google Scholar
Jolicoeur, P., & Ingleton, M. (1991). Size invariance in curve tracing. Memory & Cognition, 19, 2136.10.3758/BF03198493CrossRefGoogle ScholarPubMed
Jolicoeur, P., Ullman, S., & Mackay, M. (1986). Curve tracing: A possible basic operation in the perception of spatial relations. Memory & Cognition, 14(2), 129140.10.3758/BF03198373CrossRefGoogle ScholarPubMed
Jolicoeur, P., Ullman, S., & Mackay, M. (1991). Visual curve tracing properties. Journal of Experimental Psychology: Human Perception and Performance, 17(4), 9971022. doi: 10.1037/0096-1523.17.4.997 Google ScholarPubMed
Joseph, J. S., Chun, M. M., & Nakayama, K. (1997). Attentional requirements in a ’preattentive’ feature search task. Nature, 387(6635), 805807.10.1038/42940CrossRefGoogle Scholar
Kanwisher, N., & Driver, J. (1992). Objects, attributes, and visual attention: Which, what, and where. Current Directions in Psychological Science, 1(1), 2631.10.1111/1467-8721.ep10767835CrossRefGoogle Scholar
Kawabata, N., Yamagami, K., & Noaki, M. (1978). Visual fixation points and depth perception. Vision Research, 18(7), 853854.10.1016/0042-6989(78)90127-XCrossRefGoogle ScholarPubMed
Keshvari, S., & Rosenholtz, R. (2016). Pooling of continuous feature provides a unifying account of crowding. Journal of Vision, 16(3), 39.10.1167/16.3.39CrossRefGoogle ScholarPubMed
Koch, C., & Crick, F. (2001). The zombie within. Nature, 411, 893.10.1038/35082161CrossRefGoogle Scholar
Krauzlis, R. J., Bollimunta, A., Arcizet, F., & Wang, L. (2014). Attention as an effect not cause. (457-464, Ed.) Trends in Cognitive Sciences, 18(9), 457-464.10.1016/j.tics.2014.05.008CrossRefGoogle Scholar
Kravitz, D. J., & Behrmann, M. (2014). Space-, object-, and feature-based attention interact to organize visual scenes. Attention, Percetpion, & Psychophysics, 73(8), 24342447.10.3758/s13414-011-0201-zCrossRefGoogle Scholar
Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
Lamy, D., & Egeth, H. (2002). Object-based selection: The role of attentional shifts. Perception & Psychophysics, 64(1), 5266.10.3758/BF03194557CrossRefGoogle ScholarPubMed
Larson, A. M., Freeman, T. E., Ringer, R. V., & Loschky, L. C. (2014). The spatiotemporal dynamics of scene gist recognition. J. Exp. Psych: Human Perception & Performance, 40(2), 471487.Google ScholarPubMed
Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. J. Exp. Psych.: General, 133(3), 339354.10.1037/0096-3445.133.3.339CrossRefGoogle ScholarPubMed
Lettvin, J. Y. (1976). On seeing sidelong. The Sciences, 16(4), 1020.10.1002/j.2326-1951.1976.tb01231.xCrossRefGoogle Scholar
Levin, D. T., & Simons, D. J. (1997). Failure to detect changes to attended objects in motion pictures. Psychonomic Bulletin & Review, 4, 501506.10.3758/BF03214339CrossRefGoogle Scholar
Loftus, G. R., & Ginn, M. (1984). Perceptual and conceptual masking of pictures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(3), 435441.Google ScholarPubMed
Mack, A., & Clarke, J. (2012). Gist perception requires attention. Visual Cognition, 20(3), 300327.10.1080/13506285.2012.666578CrossRefGoogle Scholar
Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: MIT Press.10.7551/mitpress/3707.001.0001CrossRefGoogle Scholar
Manassi, M., Lonchampt, S., Clarke, A., & Herzog, M. H. (2016). What crowding can tell us about object representations. Journal of Vision, 16(3):35, 113.10.1167/16.3.35CrossRefGoogle ScholarPubMed
Manassi, M., Sayim, B., & Herzog, M. H. (2012). Grouping, pooling, and when bigger is better in visual crowding. Journal of Vision, 12(10):13, 114.10.1167/12.10.13CrossRefGoogle ScholarPubMed
Martinez-Trujillo, J., & Treue, S. (2002). Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron, 35, 365370.10.1016/S0896-6273(02)00778-XCrossRefGoogle ScholarPubMed
Matsukura, M., Brockmole, J. R., Boot, W. R., & Henderson, J. M. (2011). Oculomotor capture during real-world scene viewing depends on cognitive load. Vision Research, 5(1), 546552.10.1016/j.visres.2011.01.014CrossRefGoogle Scholar
Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neuroscience, 29(6), 317322.10.1016/j.tins.2006.04.001CrossRefGoogle ScholarPubMed
McDermott, J. H., & Simoncelli, E. P. (2011). Sound texture perception via statistics of the auditory periphery: evidence from sound synthesis. Neuron, 71, 926940.10.1016/j.neuron.2011.06.032CrossRefGoogle ScholarPubMed
Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782784.10.1126/science.4023713CrossRefGoogle ScholarPubMed
Neisser, U. (1976). Cognition and reality. San Francisco: Freeman.Google Scholar
Neumann, O. (1987). Beyond capacity: A functional view of attention. In Heuer, H., & Sanders, A. F., Perspectives on Perception and Action, pp. 361394. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision 42, 145175. doi: 10.1023/A:1011139631724 CrossRefGoogle Scholar
Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image features in recognition. Prog. Brain Res., 155, 2336.10.1016/S0079-6123(06)55002-2CrossRefGoogle ScholarPubMed
Palmer, E. M., Fencsik, D. E., Flusberg, S. J., Horowitz, T. S., & Wolfe, J. M. (2011). Signal detection evidence for limited capacity in visual search. Attention, Perception, & Psychophysics, 73, 24132424.10.3758/s13414-011-0199-2CrossRefGoogle ScholarPubMed
Palmer, J., Ames, C. T., & Lindsey, D. T. (1993). Measuring the effect of attention on simple visual search. J. of Exp. Psych.: Human Perception & Performance, 19(1), 108130.Google ScholarPubMed
Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, J. (2001). Compulsory averaging of crowded orientation signals in human vision. Nature Neuroscience, 4, 739744.10.1038/89532CrossRefGoogle ScholarPubMed
Peterson, M. A., & Gibson, B. S. (1991). Directing spatial attention within an object: Altering the functional equivalence of shape description. Journal of Experimental Psychology: Human Perception and Performance, 17(1), 170182.Google Scholar
Piggins, D. (1979). the influence of line reduction and image stabilization on Necker cube reversal: comments upon Ellis and Stark (1978). Perception, 8, 719720.10.1068/p080719CrossRefGoogle ScholarPubMed
Poder, E., & Wagemans, J. (2007). Crowding with conjunctions of simple features. Journal of Vision, 7(2), 23.10.1167/7.2.23CrossRefGoogle ScholarPubMed
Pooresmaeli, A., & Roelfsema, P. R. (2014). A growth-cone model for the spread of object-based attention during contour grouping. Current Biology, 24, 28692877. doi: 10.1016/j.cub.2014.10.007 CrossRefGoogle Scholar
Portilla, J., & Simoncelli, E. P. (2000). A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision, 40(1), 4970.10.1023/A:1026553619983CrossRefGoogle Scholar
Potter, M. C. (1975). Meaning in visual search. Science, 187, 965966.10.1126/science.1145183CrossRefGoogle ScholarPubMed
Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 119.10.1163/156856888X00122CrossRefGoogle ScholarPubMed
Recarte, M. A., & Nunes, L. M. (2003). Mental workload while driving: Effects on visual search, discrimination, and decision making. Journal of Experimental Psychology: Applied, 9(2), 119137.Google ScholarPubMed
Rensink, R. A. (2000). Seeing, sensing, and scrutinizing. Vision Research, 40, 14691487.10.1016/S0042-6989(00)00003-1CrossRefGoogle ScholarPubMed
Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8(5), 368373.10.1111/j.1467-9280.1997.tb00427.xCrossRefGoogle Scholar
Reynolds, J. H., Pasternak, T., & Desimone, R. (2000). Attention increases sensitivity of V4 neurons. Neuron, 26, 703714.10.1016/S0896-6273(00)81206-4CrossRefGoogle ScholarPubMed
Robertshaw, K. D., & Wilkie, R. M. (2008). Does gaze influence steering around a bend? Journal of Vision, 8(4), 18.113.10.1167/8.4.18CrossRefGoogle ScholarPubMed
Rosenholtz, R. (2011). What your visual system sees where you are not looking. Proc. SPIE 7865, Hum. Vis. Electron. Imaging, XVI. San Francisco: SPIE.Google Scholar
Rosenholtz, R. (2014). Texture perception. In Wagemans, J. (Ed.), The Oxford Handbook of Perceptual Organization (pp. 167186). Oxford, UK: Oxford University Press.Google Scholar
Rosenholtz, R. (2016). Capabilities and limitations of peripheral vision. Annual Rev. of Vision Sci., 2(1), 437457.10.1146/annurev-vision-082114-035733CrossRefGoogle ScholarPubMed
Rosenholtz, R. (2017). Capacity limits and how the visual system copes with them. Journal of Imaging Science and Technology (Proc. HVEI, 2017), 7865, 823.Google Scholar
Rosenholtz, R. (2020). Demystifying visual awareness: Peripheral encoding plus limited decision complexity resolve the paradox of rich visual experience and curious perceptual failures. Attention, Perception, & Psychophysics, 82(3), 901925. doi: 10.3758/s13414-019-01968-1 CrossRefGoogle ScholarPubMed
Rosenholtz, R., Huang, J., & Ehinger, K. A. (2012). Rethinking the role of top-down attention in vision: effects attributable to a lossy representation in peripheral vision. Frontiers in Psychology, 3:13. doi: 10.3389/fpsyg.2012.00013 CrossRefGoogle ScholarPubMed
Rosenholtz, R., Huang, J., Raj, A., Balas, B., & Ilie, L. (2012). A summary statistic representation in peripheral vision explains visual search. Journal of Vision, 12(4):14, 117.10.1167/12.4.14CrossRefGoogle ScholarPubMed
Rosenholtz, R., Yu, D., & Keshvari, S. (2019). Challenges to pooling models of crowding: Implications for visual mechanisms. Journal of Vision, 19(7), 15.10.1167/jov.19.7.15CrossRefGoogle ScholarPubMed
Rousselet, G. A., Joubert, O., & Fabre-Thorpe, M. (2005). How long to get to the “gist” of real-world natural scenes. Visual Cognition, 12(6), 852877.10.1080/13506280444000553CrossRefGoogle Scholar
Rousselet, G. A., Thorpe, S. J., & Fabre-Thorpe, M. (2004). Processing of one, two, or four natural scenes in humans: the limits of parallelism. Vision Research, 44(9), 877894.10.1016/j.visres.2003.11.014CrossRefGoogle ScholarPubMed
Ruggieri, V., & Fernandez, M. F. (1994). Gaze orientation in perception of reversible figures. Perceptual and Motor Skills, 78, 299303.10.2466/pms.1994.78.1.299CrossRefGoogle ScholarPubMed
Sayim, B., Westheimer, G., & Herzog, M. H. (2010). Gestalt factors modulate basic spatial vision. Psychological Science, 21(5), 641644.10.1177/0956797610368811CrossRefGoogle ScholarPubMed
Shaw, M. L. (1978). A capacity allocation model for reaction time. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 586598.Google Scholar
Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28, 10591074.10.1068/p281059CrossRefGoogle ScholarPubMed
Smith, M. E., Sharan, L., Park, E., Loschky, L. C., & Rosenholtz, R. (under revision). Difficulty detecting changes in complex scenes depends in part upon the strengths and limitations of peripheral vision. Journal of Vision.Google Scholar
Snyder, C. R. (1972). Selection, inspection, and naming in visual search. Journal of Experimental Psychology, 92(3), 428431.10.1037/h0032268CrossRefGoogle ScholarPubMed
Stewart, T. (2022, March). Overview of motor vehicle crashes in 2020. National Highway Safety Traffic Administration.Google Scholar
Strasburger, H., Rentschler, I., & Jüttner, M. (2011). Peripheral vision and pattern recognition: A review. Journal of Vision, 11(5), 13.10.1167/11.5.13CrossRefGoogle ScholarPubMed
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599606.10.3758/BF03211656CrossRefGoogle ScholarPubMed
Tractinsky, N., & Shinar, D. (2008). Do we bump into things more while speaking on a cell phone? Proc. CHI ’08 Extended Abstracts, Alt CHI (pp. 2433-2442). New York: ACM.Google Scholar
Treisman, A. (2006). How the deployment of attention determines what we see. Visual Cognition, 14, 411443.10.1080/13506280500195250CrossRefGoogle ScholarPubMed
Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cogn. Psychol., 12, 97136.10.1016/0010-0285(80)90005-5CrossRefGoogle ScholarPubMed
Treisman, A., & Schmidt, H. (1982). Illusory conjunctions in the perception of objects. Cognitive Psychology, 14, 107141.10.1016/0010-0285(82)90006-8CrossRefGoogle ScholarPubMed
Tsal, Y., & Kolbet, L. (1985). Disambiguating ambiguous figures by selective attention. Quarterly Journal of Experimental Psychology, 37(1), 2537.10.1080/14640748508400950CrossRefGoogle Scholar
Ullman, S. (1984). Visual routines. Cognition, 18, 94159.10.1016/0010-0277(84)90023-4CrossRefGoogle ScholarPubMed
Ullman, S. (1996). Visual cognition and visual routines. In Ullman, S., High-Level Vision (pp. 263315). Cambridge, MA: MIT Press.10.7551/mitpress/3496.003.0011CrossRefGoogle Scholar
Van Essen, D. C., & Anderson, C. H. (1995). Information processing strategies and pathways in the primate visual system. In Zornetzer, S. F., Davis, J. L., Lau, C., & McKenna, T. (Eds.), An Introduction to Neural and Electronic Networks (2nd ed., pp. 4576). San Diego, CA: Academic.Google Scholar
VanRullen, R., Reddy, L., & Koch, C. (2004). Visual search and dual tasks reveal two distinct attentional resources. J. Cogn. Neurosci., 16, 414.10.1162/089892904322755502CrossRefGoogle ScholarPubMed
Wolfe, B., Dobres, J., Rosenholtz, R., & Reimer, B. (2017). More than the Useful Field: Considering peripheral vision in driving. Applied Ergonomics, 65, 316325.10.1016/j.apergo.2017.07.009CrossRefGoogle Scholar
Wolfe, B., Sawyer, B. D., Kosovicheva, A., Reimer, B., & Rosenholtz, R. (2019). Detection of brake lights while distracted: Separating peripheral vision from cognitive load. Attention, Perception, & Psychophysics, 81(8), 27982813.10.3758/s13414-019-01795-4CrossRefGoogle ScholarPubMed
Wolfe, B., Seppelt, B. D., Mehler, B., Reimer, B., & Rosenholtz, R. (2019). Rapid holistic perception and evasion of road hazards. Journal of Experimental Psychology: General, 149(3), 490500.10.1037/xge0000665CrossRefGoogle ScholarPubMed
Wolfe, J. M. (1998). What can 1 million trials tell us about visual search. Psychological Science, 9(1), 3339.10.1111/1467-9280.00006CrossRefGoogle Scholar
Wolfe, J. M. (1999). Inattentional amnesia. In Coltheart, V. (Ed.), Fleeting Memories (pp. 7194). Cambridge, MA: MIT Press.Google Scholar
Wolfe, J. M., Kosovicheva, A., & Wolfe, B. (2022). Normal blindness: when we Look But Fail To See. Trends in Cognitive Sciences, 26(9), 809819.10.1016/j.tics.2022.06.006CrossRefGoogle ScholarPubMed
Wolfe, J. M., Vo, M. L.-H., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes involves selective and non-selective pathways. Trends in Cognitive Sciences, 15(2), 7784.10.1016/j.tics.2010.12.001CrossRefGoogle Scholar
Wu, W. (2023, December 15). We know what attention is! Retrieved from Trends in Cognitive Sciences: https://doi.org/10.1016/j.tics.2023.11.007 CrossRefGoogle Scholar
Young, R. (2012). Cognitive distraction while driving: A critical review of definitions and prevalence in crashes. SAE International Journal of Passenger Cars -- Electronic and Electrical Systems, 5(1), 326342.10.4271/2012-01-0967CrossRefGoogle Scholar
Zhang, X., Huang, J., Yigit-Elliot, S., & Rosenholtz, R. (2015). Cube search, revisited. Journal of Vision, 15(3), 9.10.1167/15.3.9CrossRefGoogle Scholar
Zivony, A., & Eimer, M. (2021). The diachronic account of attentional selectivity. Psychonomic Bulletin & Review 29(4). doi: 10.3758/s13423-021-02023-7 Google ScholarPubMed